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Abstract

The bending deformation of rotating annular plates
and the associated vibration behaviour is important in
engineering applications which range from automotive
or railway brake systems to discs that form essential
components in turbomachinery.

In order to extend the capabilities of the DLR
FlexibleBodies library for such use cases, a new Mod-
elica class has been implemented which is based on the
analytical description of an annular Kirchhoff plate. In
addition the so-called Arbitray Langrangian-Eulerian
(ALE) representation has been adopted so that rotating
and non-rotating external loads may be applied con-
ventiently to rotating plates.

Besides these particularities the new class An-
nularPlate completely corresponds to the concept of
FlexibleBodies library with the two already available
model classes Beam and ModalBody.

This paper gives an overview on the theoretical
background of the new class AnnularPlate, explains
the usage and presents application examples.

Keywords: Arbitrary Lagrangian-Eulerian ap-
proach, annular Kirchhoff plate, flexible multibody
system

1 Introduction

The commercial DLR FlexibleBodies library pre-
sented in 2006 [1] contains two different types of
model classes: The Beam model employs an analyt-
ical description of the deformation field, while a gen-
eral ModalBody model is defined in such a way that
the dynamic behaviour of a body with an arbitrary ge-
ometrical shape can be simulated if suitable finite ele-
ment data of the body exist.

The new model class AnnularPlate introduced in
this paper is implemented in the same manner as it ap-
plies for the Beam model. The analytical description
of an annular Kirchhoff plate has been used to define

the object-oriented data structure called ”Standard In-
put Data of flexible bodies“ (SID), see [2], which is the
general base of all models in the DLR FlexibleBodies
library.

Rotating discs are a very common structure type
in mechanical engineering. But their modeling often
has to cope with the difficulty to describe non-rotating
forces acting on the disc such as the normal and fric-
tion forces at a disc brake. Usually this requires a con-
tact formulation in order to evaluate which material
point of the disc is in contact with the pad at the con-
sidered point in time.

Due to the so-called Arbitrary Lagrangian-
Eulerian description it is possible to provide a standard
Modelica multibody frame connector which is how-
ever not linked to a material point of the plate, but
slides over the surface of the plate as it is given for the
brake disc-pad contact point. No contact problem has
to be formulated and solved and normal and friction
forces are convenient to apply at this frame connector.

In addition the AnnularPlate model is capable of
defining material-fixed points on the plate with frame
connectors to which forces, other bodies such as un-
balances, springs etc. may be attached in the usual
way.

2 Theoretical Background

This section shortly summarizes well-known funda-
mentals on structural dynamics of annular plates and
on multibody dynamics. The modeling approach of
the FlexibleBodies library utilizes these fundamentals
and will be introduced in Sec. 3.

2.1 Partial Differential Equation

The partial differential equation (PDE) of a freely vi-
brating, homogeneous Kirchoff plate with transverse
deformation w in the mid-plane of the plate as a
function of the radius r, the angle φ and time t, i.e.



w = w(r,φ, t), reads

D ∆∆w+ ρ̂ẅ = 0 , (1)

where ∆ denotes the Laplace operator and ρ̂ represents
the mass per unit area [3, (1.1)]. D is the bending rigid-
ity of the plate according to

D :=
Eh3

12(1−ν2)
(2)

and depends on the Young’s modulus E, the plate
thickness h and the Poisson number ν.

An analytical solution to (1) is assumed in the
form

w(r,φ, t) = R(r) ⋅Φ(φ) ⋅q(t) , (3)

so that the PDE (1) can be separated in three ordinary
differential equations (ODE) for R(r), Φ(φ) and q(t),
respectively [4, 4.3.15].

For R(r) the Bessel-type ODE

r4R′′′′+2r3R′′′− (1+2k2)(r2R′′− rR′)+

+(k4−4k2−λ
4r4)R = 0 , ( )′ :=

d
dr

,
(4)

is obtained [5, (5.1-120)]. The parameter k relates (4)
to Φ(φ) in (3) and represents the wavenumber or the
number of nodal diameters in Fig. 2. The parameter λ

depends on the eigenvalue ω of the ODE for q(t):

λ
2 := ω

√
ρ̂

D
. (5)

Bessel and modified Bessel functions of first and sec-
ond kind satisfy (4) and have to be selected in such a
way that the boundary conditions at the inner and the
outer radius of the annular plate are considered.

Harmonic waves provide a solution with respect
to the angular coordinate, i.e. Φ(φ) = cos(kφ+ψk)
with offset angle ψk and Φ(φ) = Φ(φ+2π).

Finally, the time-dependency of the displace-
ments q(t) are as well assumed to be harmonic, e.g.
q(t) = sin(ω t).

Note that (1) has an infinite number of solutions,
out of which only a reduced, finite number of eigen-
values ω and associated deformation fields, the eigen-
forms in Fig. 2, are considered for numerical analysis.

2.2 Multibody Framework

The mechanical description in multibody dynamics is
based on the floating frame of reference approach, i.e.
the absolute position rrr = rrr(ccc, t) of a specific body par-
ticle is subdivided into three parts: the position vector

rrrR = rrrR(t) to the body’s reference frame, the initial po-
sition of the body particle within the body’s reference
frame, i.e. the Lagrange coordinate ccc ∕= ccc(t), and the
elastic displacement uuu(ccc, t):

rrr = rrrR +ccc+uuu , (6)

where all terms are resolved w.r.t. the body’s floating
frame of reference (R).

Therefore the angular velocity of the reference
frame ωωωR have to be taken in account when the kine-
matic quantities velocity vvv and acceleration aaa of a par-
ticle are derived:

vvv = ω̃ωωR rrr+ ṙrr = vvvR +ω̃ωωR (ccc+uuu)+ u̇uu , (7)

aaa = aaaR +( ˙̃ωωωR +ω̃ωωR ω̃ωωR) (ccc+uuu)+2ω̃ωωR u̇uu+ üuu , (8)

where the ˜( )-operator is used to replace the vector
cross product by a multplication with an appropriate
skew-symmetric matrix, so that e.g. the identity ωωω×
ccc = ω̃ωω ccc holds.

The decomposition in (6) makes it possible to su-
perimpose a large non-linear overall motion of the ref-
erence frame with small elastic deformations.

The displacement field of the annular plate is
approximated by a first order Taylor expansion with
space-dependent mode shapes ΦΦΦ(ccc) ∈ ℝ3,n and time-
dependent modal amplitudes qqq(t) ∈ ℝn [2]:

uuu =ΦΦΦ qqq. (9)

Note that the description of the annular plate is lim-
ited to this first order expansion in this initial imple-
mentation, so that plate buckling phenomena are not
covered, see [6], [7, Ch. 1]. The second order dis-
placement field of an annular plate currently is a field
of research at the DLR.

Figure 1: Vector chain to specify the position rrr re-
solved in the floating frame of reference (R).



The kinematic quantities together with the vector
of applied forces fff e are inserted into Jourdain’s prin-
ciple of virtual power:

δvvvT
∫

body

(d fff e−aaa dm) = 0 . (10)

Subsequently, the equations of motion of an un-
constrained flexible body are formulated neglecting
deflection terms of higher than first order [2, (38)]:⎛⎝ mIII3 sym.

md̃ddCM JJJ
CCCt CCCr MMMe

⎞⎠⎡⎣ aaaR

ω̇ωωR

q̈qq

⎤⎦=

= hhhω −

⎡⎣ 000
000

KKKe qqq+DDDe q̇qq

⎤⎦+hhhe , (11)

where the following quantities and symbols appear:
m body mass
III3 3×3 identity matrix
dddCM(qqq) position of center of mass
JJJ(qqq) inertia tensor
CCCt(qqq) inertia coupling matrix
CCCr(qqq) inertia coupling matrix
hhhω(ωωω,qqq,q̇qq) gyroscopic and centripetal forces
hhhe external forces
MMMe structural mass matrix
KKKe structural stiffness matrix
DDDe structural damping matrix

If, for the sake of demonstration, the body is as-
sumed to be rigid, those rows and columns in (11)
vanish that are associated with the generalised de-
formational acceleration q̈qq. Since (11) is formulated
in terms of the translational and angular accelera-
tion of the floating frame of reference, such reduc-
tion leads to the classical Newton-Euler equations of
a rigid body. Therefore, SHABANA calls (11) the gen-
eralised Newton-Euler equations of an unconstrained
deformable body in [8, Sec. 5.5].

On the other hand, if the motion of the reference
frame is constrained to be zero, (11) is reduced to the
classical structural equation

MMMe q̈qq+DDDe q̇qq+KKKe qqq = fff e , (12)

where fff e is that part of hhhe that is associated to the rows
of q̈qq.

3 The Annular Plate Model

3.1 Mode Shapes

In order to specify the spatial shape functions in (9) the
knowledge on the analytical solution in (3) is exploited

and the displacements are formulated as function of
cylindrical coordinates, i.e. ΦΦΦ =ΦΦΦ(r,φ,z), w,r and w,φ

are partial derivatives with respect to r or φ:

n

∑
i=1

ΦΦΦiqi(t) =

⎡⎢⎣ −z(cos(φ)w,r− sin(φ)
r w,φ)

−z(sin(φ)w,r +
cos(φ)

r w,φ)
w

⎤⎥⎦ ,

w =
lm

∑
l=0

km

∑
k=0

Rl(r) ⋅ cos(kφ) ⋅qi(t)+ . . .

. . .+
lm

∑
l=0

km

∑
k=1

Rl(r) ⋅ sin(kφ) ⋅qi(t) ,

with i = 1,2, . . . ,n , n = (lm +1)(2km +1) .

(13)

Since the parameter k may be interpreted as the num-
ber of nodal diameters and l as the number of nodal
circles, each specific couple < l,k > may be visualized
by a nodal pattern shown in Fig. 2, which character-
izes the shape function or eigenform, respectively.

Figure 2: Example nodal diameters k and circles l
that characterize annular plate eigenforms. Supported
boundary conditions are applied at the inner radius.

For the sake of demonstration Fig. 3 illustrates
one exemplary mode shape from Fig. 2 in a different
way.

Figure 3: The k = 2 and l = 2 mode shape from Fig. 2
in more details, cp. [5, 5.1-29].



The number of considered mode shapes in the
model is controlled by the values lm and km, which are
to be specified by user input parameters of the Annu-
larPlate class.

The functions Rl(r) in (13) correspond to the
Bessel functions mentioned in Sec. 2.1. However
for the sake of simplicity and robustness of the im-
plementation the original Bessel functions have not
been used but a two-step approach is applied. At first
the displacement field in radial direction and the un-
derlying ODE (4) is discretized with cubic B-splines
R̄RR(r) = (R̄1(r), R̄2(r), ..., R̄p(r))T as shown in Fig. 4
taking the boundary conditions at the inner and outer
radius into account [9].

Figure 4: Example set of cubic B-splines for free
boundary conditions to initially discretize the dis-
placement field in radial direction.

That way the associated mass M̄MMe and stiffness
matrix K̄KKe are evaluated. In the second step the prob-
lem

[M̄MMeω
2
n +K̄KKe] vvvn = 0 (14)

is solved for a specified number of eigenvalues ωn.
One specific eigenvector vvvn=l may then be interpreted
to define a fixed linear combination of the initial B-
splines functions in such a way that the associated so-
lution of (4) is approximated, i.e. Rl ≈ vvvT

l ⋅ R̄RR. The
accuracy of the approximation may be controlled by
the number of the initially used B-splines p in relation
to the specified value lm. The final result corresponds
to the approach in (13).

3.2 Arbitrary Lagrangian-Eulerian Descrip-
tion

It is now considered that the annular plate performs a
in general large rotation around its central axis spec-
ified by the angle χ(t). So far the motion of material

Figure 5: Coordinate transformation with angle χ, that
leads from the Langrangian to the ALE-decription.

particles is described in the so-called Lagrangian point
of view [10, Sec. I.3], i.e. the floating frame of refer-
ence follows the rotation as it is shown for the coordi-
nate system named B in Fig. 5.

However for specific use cases it may make sense
to resolve the deformation of the plate in frame A in
Fig. 5 that follows the complete reference motion of
the plate except of the motion expressed by the angle
χ. In other words, the observer does not rotate with
the plate but looks on the plate from the outside, from
a point in rest concerning the rotation with angle χ(t).

This idea is influenced by the Eulerian descrip-
tion [10, Sec. I.4] widely used in fluid dynamics,
where the motion state of the fluid at a fixed point in
space is presented. However the concept introduced
above combines aspects of the Lagrangian and the Eu-
lerian approach and is therefore known as Arbitrary
Lagrangian-Eulerian (ALE) description in literature,
see e.g. [11]. Due to the rotational symmetry proper-
ties of the annular plate the ALE-description can here
be formulated in an elegant way.

For theoretical derivation the coordinate transfor-
mation

φ = θ−χ (15)

is defined, where θ specifies the angular position of
an observed point on the annular plate resolved with
respect to the ALE-reference system A in Fig. 5.

Furthermore it is assumed that for every mode
shape in (13) that employs a sin(kφ)-term an associ-
ated mode shape is present where the sinus- is replaced
by the cosinus-function only, but Rl(r) and k are iden-
tical, so that mode shape couples c1 and c2 exist:

c1(r,φ) = Rl(r) ⋅ sin(kφ) ,

c2(r,φ) = Rl(r) ⋅ cos(kφ) .
(16)

If the following identities

sin(kφ) = sin(kθ)cos(kχ)− cos(kθ)sin(kχ) ,

cos(kφ) = cos(kθ)cos(kχ)+ sin(kθ)sin(kχ)
(17)



are inserted into (16), an associated mode couple
c̄1(r,θ) and c̄2(r,θ) defined with respect to frame A
appears:

c1(r,φ) =

=Rl sin(kθ)︸ ︷︷ ︸
:=c̄1(r,θ)

cos(kχ)−Rl cos(kθ)︸ ︷︷ ︸
:=c̄2(r,θ)

sin(kχ) ,

=c̄1(r,θ)cos(kχ)− c̄2(r,θ)sin(kχ) ,

c2(r,φ) = c̄1(r,θ)sin(kχ)+ c̄2(r,θ)cos(kχ) .

(18)

As a result of suitable transformations it may also be
written:

c̄1(r,θ) = c2(r,φ)sin(kχ)+ c1(r,φ)cos(kχ) ,

c̄2(r,θ) = c2(r,φ)cos(kχ)− c1(r,φ)sin(kχ) .
(19)

The modes c̄1(r,θ) and c̄2(r,θ) are defined in the
ALE-reference system A and are linear combinations
of the modes c1(r,φ) and c2(r,φ) described in the La-
grangian frame B , whereas the combination depends
on χ.

This information can be exploited in order to de-
fine a transformation: a deformation field resolved in
the Lagrangian frame can be transformed to be re-
solved in the ALE frame and vice versa. Of course
the physical deformation field itself does not change,
but its resolution does so that the numerical values
describing the deformation field will be different in
frame A or B , respectively.

In practise the transformation is formulated in
terms of the modal amplitudes qi(t) which are the de-
formation variables in (11):

q̄i1(t) = sin(kχ(t)) ⋅qi2(t)+ cos(kχ(t)) ⋅qi1(t) ,

q̄i2(t) = cos(kχ(t)) ⋅qi2(t)− sin(kχ(t)) ⋅qi1(t) .
(20)

Again, the new modal amplitudes in the ALE frame
q̄i(t) are expressed as a linear combination of modal
amplitudes in the Lagrangian frame qi(t) and it is just
a matter of convenience and practicability in which co-
ordinates the equations of motion are actually evalu-
ated.

One particularity has been ignored so far. For
mode shapes with k = 0, i.e. no nodal diameters in
Fig. 2, no mode couple with c1 and c2 according to
(16) exists, since no associated sinus-function is intro-
duced in (13). As a consequence the transformation
(20) is not defined for such modes. However, eigen-
forms with k = 0 present rotational-symmetric defor-
mation fields since the dependency on φ is eliminated
in (13) due to the term cos(kφ). As a consequence
eigenforms with k = 0 are invariant with respect to

rotations with angle χ or in other words: The modal
coordinates qi(t) related to k = 0 are identical in the
ALE- and the Lagrangian description and no transfor-
mation is needed.

4 The User Interface

4.1 Connectors and Parameters

Figure 6: Icon layer of the AnnularPlate class with 3
types of multibody connectors: the floating frame of
reference and two arrays of frames representing points
in Lagrangian- or ALE-description, respectively.

Fig. 6 presents the AnnularPlate icon. Connec-
tions to the floating frame of reference of the plate
are to be defined using the frame ref connector. The
array of connectors nodes Lagrange contains as much
frames as are given by the first dimension of the input
parameter xsi in the following table:

geometrical parameters
r i [m] inner radius of the plate
r a [m] outer radius of the plate
th [m] thickness of the plate
xsi[:,2] [−] points on the disc

Each row of xsi specifies the radial and the angu-
lar position of one point in the mid-plane of the disc
parametrized in the interval [0,1], e.g. xsi[1, :] =
{0.5,0.125} defines a point in the middle between the
inner and outer radius at 45∘ angular position.

The connector array nodes ALE refers to the same
input parameter definition xsi, whereas the associated
points here are described in the ALE-representation.
Forces and torques applied to these frames are in rest
which respect to the rotation χ of the disc.

Note that conventional frame connectors from the
Standard Multibody library are used within the Flexi-



bleBodies library and no restrictions concerning con-
necting e.g. other bodies to nodes ALE are effected,
although nodes ALE frames do not represent material
points.

Usually multibody frame connections represent
physical mounting devices such as screws or welds
that bond two frames together so that their positions
and orientations are constrained to be identical. How-
ever it is the idea of nodes ALE frames that they are not
bonded to the disc and there is no mounting device.
From the plate’s material point of view nodes ALE
frames slide on the plate. In view of this fact the user
is in charge to ensure that connections to nodes ALE
frames are physical consistent. If e.g. another body
is attached to a nodes ALE frame this would require
a physical guidance device on the plate to which the
external body is connected.

In addition to the 3-dimensional multibody frame
connectors, two 1-dimensional rotational flanges are
shown in Fig. 6. These two flanges are connected to
both sides of the 3-dimensional rotational joint which
is introduced into the AnnularPlate class at the plate
axis by default. The two flanges are conditionally in-
stantiated controlled via user parameter and can be uti-
lized to e.g. define constant rotation velocity.

In addition to the purely geometrical parameters
above, the table below shows the physical parame-
ters the user has to provide in order to employ a An-
nularPlate instance:

physical parameters
rho [kg/m3] mass density
E [N/m2] Youngs’s modulus
G [N/m2] Shear modulus

The following discretization parameters control
the modal approach of the AnnularPlate model accord-
ing to (13):

∙ boundaryConditionRI: This enumeration pa-
rameter offers the options free, supported and
clamped and specifies the boundary condition at
the inner radius.

∙ boundaryConditionRA: This is again an enumer-
ation parameter that specifies the boundary con-
dition at the outer radius in the same way as noted
for the inner radius.

∙ nodalDiameters: This is an integer vector of
arbitrary length, in which all nodal diameters
numbers k, see Fig. 2, to consider have to be
given. E.g. nodalDiameters = {0,2} defines

that all modes (to be additionally qualified by
nodalCircles) with zero and two nodal diameters
are to be taken into account.

∙ nodalCircles: This is an integer vector of arbi-
trary length, in which all nodal circles l to con-
sider have to be given, see Fig. 2.

∙ damping: This is a real vector, which defines the
damping of each mode separately.

There is one aspect in which the discretization pa-
rameters above differ from what is depicted in (13).
There, the number of mode shapes is specified by two
thresholds lm and km and all modes with l ≤ lm and
k≤ km are included in the model. However the two in-
puts nodalCircles and nodalDiameters offer the pos-
sibility to specify each nodal circle and diameter to be
considered, separately.

A literature review had revealed that in particular
brake squeal models often only include a single mode
shape couple corresponding to a specific frequency at
which squeal phenomena have been observed in real
applications, see e.g. [12]. The case is covered by the
parameter definitions above.

Besides the discretization parameters that are re-
lated to the underlying plate model the graphical user
interface of the AnnularPlate class consists of a bun-
dle of other input data to specify in-scale and exag-
gerated animation, initialization, state selection and so
on. Concerning these more general issues the user in-
terface corresponds to what is already known from the
Beam and ModalBody class of the DLR FlexibleBod-
ies library.

4.2 Degenerated Geometry

There are two different cases of degenerated geometry
which lead to singularities if defined by user input:

circular plate: The AnnularPlate model is not ca-
pable of representing a true circular plate with
ri = 0. The model will simulate, if a very small
inner radius such as e.g. ri = 1−10m is given,
but as long as not enforced by clamped boundary
conditions the displacement results on the inner
radius do not satisfy the compatibility equations
of continuum mechanics, see [10, Sec. II.6]. E.g.
consider two displacements uuuA(ri) and uuuB(ri) of
two arbitrary, but not coinciding points lying on
the inner radius, then the following statement has
to be noticed in general:

lim
ri→0

(uuuA(ri)−uuuB(ri))
2 ∕= 0



circular ring: It is also not possible to specify ri = ra.
From the theoretical point of view the user may
define an annular plate with arbitrary small width
ra− ri > 0, but as a consequence the eigen fre-
quencies ωi of the flexible body will be increased
towards infinity:

lim
ri→ra

ωi = ∞

5 Example Models

5.1 A Lathe Cutting Model

Figure 7: Diagram layer of the Lathe Cutting Model

The cylindrical turning of a disc on a lathe in
Fig. 7 serves as an first example to demonstrate the ap-
proach. The disc, ri = 0.075m, ra = 0.15m, th= 0.01m
made of steel, rotates with constant rotational velocity
while the lathe tool is moved in parallel to the disc
axis in order to form the outer cylindrical disc surface.
The cutting tool is supported by a linear spring-damper
element which represents compliances of the tool ma-
chinery.

The assumed cutting speed is 100 m/min, the feed
is 120 mm/min. The relevant force here, the feed for-
ward force f f is evaluated according to the instanta-
neous chip dimensions b and h:

f f = b h1−m f k f 1.1 , (21)

using the specific force constants m f = 0.7013, k f 1.1 =
351 N/mm2.

The disc is assumed to be clamped at the inner
radius and free at the outer radius.

Fig. 8 shows the animation of the simulation
where the largest deformation is of course at the at-
tachment point of the feed forward force.

Figure 8: AnnularPlate model with applied non-
rotating feed forward force, the solid animation shows
the in-scale deformation at t = 0.9 s, while the wire-
frame animation is exaggerated by a factor of 100.

Fig. 9 depicts the time history of two deforma-
tions states qi(t) that are associated to the eigenforms
with node diameter k = 1 and node circle l = 0. After
0.25 s, the lathe tool approaches the plate and begins
to cut. Then the chip dimensions are increased which
leads to a larger feed forward force and larger defor-
mations. After 1.23 s the cutting process is stationary.

The upper plot presents the Lagrange point of
view, the virtual observer rotates with the plate and
experiences how the deformations change with the ro-
tation angle.

The lower plot delineates the standpoint of an ob-
server that does not rotate with the plate. As a conse-
quence the deformation of the plate is experienced to
be stationary with respect to the rotation angle.

In order to verify the implementation the natural
frequencies of the AnnularPlate model were compared
to the results of a FEM analysis for different combina-
tions of boundary conditions. Tab. 1 gives the results
for the set-up used in the lathe cutting model. The dif-
ferences are indeed very small for all boundary con-
ditions so that at least the evaluation of the structural
mass and stiffness matrices MMMe and KKKe can be assumed
to be correct.

For two reasons this lathe cutting scenario is a
challenging one: Firstly, the frequency of the excita-
tion is much lower than the lowest natural frequency
of the plate, i.e. this scenario is a quasi-static one. It



Figure 9: Modal amplitudes of two exemplary defor-
mation states in Lagrangian and ALE-description.

is a known phenomenon that the discretization with
eigenmodes is comparable inefficient whenever static
deformation fields are to represent, so that a large num-
ber of modes is necessary to get correct values. Note
that this fact does not apply for dynamic excitations.

Secondly, the application of a single, discrete
force at the circumference of an annular plate is an
issue for the angular discretization, which here may be
interpreted as a Fourier expansion. Again, it is to ex-
pect that a large number of modes is necessary to get
values close to reality.

A closer look at the exaggerated compared to the
in-scale animation in Fig. 8 shows that deformations
also occur in regions e.g. opposite to the force attach-
ment point. These displacement results far away from
the cutting tool are reduced if a higher number of nodal

Natural frequencies [Hz]

Modelica 1449 1478 1478 1635 1635
Ansys 1451 1480 1480 1637 1637

Modelica 2064 2064 2847 2847 3974
Ansys 2065 2065 2848 2848 3977

Table 1: The first 10 natural frequencies of an An-
nularPlate model compared to an Ansys model of the
same plate with 1296 Shell63 elements for the sake of
verification.

diameters k is considered.
The convergence of the deformation results as a

function of the nodal diameters k and the nodal circles
l is presented in Fig. 10, where the deformation at the
force attachment points are given. At least the nodal
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Figure 10: Convergence of the displacements results
at the force attachment point

diameters k = 0,1, . . . ,7 and the nodal circles l = 0,1
should be taken into account in order to get reasonable
static deformation results which leads to all together
30 degrees of freedom. The highest frequency in the
model associated to the eigenform with k = 7, l = 1
turns out to be 18837 Hz. In the first implementation
44.7 cpu-s were required to simulate the 5.5 s of the
complete scenario with a common lap-top.

5.2 A Helicopter Blade Control Model

The cyclic blade control of an helicopter is the sec-
ond application example shown in Fig. 11. The swash
plate, here modeled as an annular plate, supports two
linkages that actuate the pitch joint of the helicopter
blades. As long as the swash plate rotates in parallel
to the rotor base carrying the blades above, the pitch
of the blades is kept constant during one rotation. If
the swash plate is tilted in such a way that the angular
velocity vectors of the rotor base and the swash plate
are no more collinear, the blade pitches are a function
of the rotation angle, see Fig. 12.

Since the direction and value of the air forces act-
ing on the blades depend on the pitch angle, the roll
and pitch motion of the helicopter fuselage can be con-
trolled via this mechanism.

Besides the swash plate, the linkages, the rotor
base and the pitch joints, the model in Fig. 13 contains



Figure 11: Total view on the helicopter mechanism:
the wireframe illustrations exaggerate the deforma-
tions by a factor of 100, while the solid representations
are shown in true scale.

two 5 m long beams describing the blades and consid-
ering their torsional and two-directional bending de-
formation. A rough representation of the air forces’
effects on the pitch motion is given by force-damper
elements acting on the pitch joints. The prismatic joint
in Fig. 13 allows for the adjustment of the vertical po-
sition of the swash plate and thereby governs the col-
lective pitch angle. The rotational joint aside regulates
the tilting angle of the swash plate and therefore pro-
vides cyclic blade control.

The inner and outer radius of the 0.01 m thick
swash plate made of steel is set to 0.1 and 0.39 m, re-
spectively. Supported boundary conditions are applied
at the inner radius and the l = 0, k = 0,1, . . . ,7 eigen-
forms are considered, so that 15 degrees of freedom
and eigenfrequencies between 50 Hz and 1009 Hz are
defined. Since the externals loads acting on the plate
here rotate with the plate the ALE-functionality was

Figure 12: Side View on the tilted Swash Plate: the
absolute value of the deformations are additionally in-
dicated by color.

Figure 13: Diagram layer of a Helicopter Blade Con-
trol Model

not used. The blade models take the first eigenform
for each of the three deformations types into account.
In order to evaluate 1 s simulation time, 4.7 cpu-s are
required on a common lap-top.

The simulation scenario assumes a constant angu-
lar motion of the blades with 22 rad/s, the swash plate
tilting angle is as well constant, namely 8∘. Fig. 14
shows the controlled pitch angles as a function of time.

The above plot in Fig. 15 presents the bending de-
formation of the plate at those two positions where the
linkages are attached to. Since the model is initialized
in the undeformed configuration, natural vibration are
initiated but are damped out rather quickly due to the
defined structural damping of 2%.

The first modal amplitude in the plot below in
Fig. 15 is associated to the rotational-symmetric < k =
0, l = 0 >-eigenform and its stationary value q1 ∕= 0
is ruled by the gravity load. The modal amplitude q2

Figure 14: Simulation results concerning the con-
trolled helicopter blade pitches.



Figure 15: Deformation results at the two linkage
attachment points and two modal amplitudes of the
swash plate.

is related to that < k = 1, l = 0 >-eigenform, which
displays its maximum and minimum deformations ex-
actly at the linkage attachment points. As a conse-
quence q2 represents by far the dominating part of the
particular solution.

5.3 A Brake Squeal Model

The last application is a reproduction of a brake squeal
model presented by Chakraborty et.al. [12]. It is based
on the idea that the friction forces are oriented along

Figure 16: Animation of the brake disc with 18 ap-
plied friction forces oriented along the deformed sur-
face (wireframe scale 1000:1). Pads and caliper bodies
are considered but omitted for the visualization only.

Figure 17: Modal amplitudes of the Brake Squeal
Model.

the deformed friction surface. This so-called follower-
forces phenomenon leads to a flutter-type instability
and as a consequence to brake squeal. The arrows
in the animation Fig. 16 show the friction forces as
they are aligned with the surface tangent at the contact
points. Due to this set-up the limit cycles in Fig. 17 oc-
cur as soon as the friction coefficient exceeds a certain
limit.

The simulation scenario was defined as an initial
value problem. Therefore the modal amplitudes of the
first 1.5 s in Fig. 17 slightly differ from the behavior
later on. The angular velocity of the brake disc was
assumed to be constant 25 rad/s, the brake disc di-
mensions were set to ri = 0.07 m, ra = 0.153 m and
th = 0.0181 m and 4 eigenforms with l = 0, k = 1,2
with supported boundary conditions at the inner radius
are considered. 64 cpu-s were needed to simulate the
5 s to be seen in Fig. 17.

The contact is formulated with one prismatic joint
in axial direction for each contact point, see Fig. 18.
The spherical joint allows for the alignment of the
friction force with the contact surface. frame b is to
be connected to one nodes ALE frame of the annu-
lar plate, see Fig. 6. frame a is supposed to provide
the connection to the brake caliper, which is a part of
the model but not visualized in Fig. 16. The spring-
damper element attached to the prismatic joint rep-
resents the contact stiffness. For a more advanced
study, this linear element may be replaced by a non-



Figure 18: Diagram layer of the contact submodel.

linear spring which takes the loss of contact or the lift-
off of the brake pads, respectively, into account. The
simplicity of the contact modeling here again demon-
strates the advantages of the ALE-description.

6 Conclusions and Outlook

This paper introduces the new Modelica class called
AnnularPlate. The underlying plate model refers to
a homogeneous Kirchhoff plate in cylindrical coordi-
nates. The option to use connector frames in the so-
called Arbitrary Lagrangian-Eulerian description of-
fers the capability to apply non-rotating external loads
in a convenient and numerical efficient way. The first
example, a lathe cutting model, demonstrates in partic-
ular the advantages of this ALE-approach. The Heli-
copter Blade Control model presents the annular plate
model as a part of a more complex mechanism. A
Brake Squeal Model from literature concludes the ex-
ample presentation. The AnnularPlate class will be
distributed with the Version 2.0 of the commercial
DLR FlexibleBodies library.

Future enhancements concern the second order
displacement field description to cover initial plate
buckling phenomena as well. The additional consider-

ation of torsional deformations of the plate is another
optional improvement in order to cope with applica-
tions in which large forces in circumferential direction
are present.
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