
                       

Towards a Benchmark Suite for Modelica Compilers: Large Models 

Jens Frenkel+, Christian Schubert+, Günter Kunze+, Peter Fritzson*, Martin Sjölund*, Adrian Pop* 
+Dresden University of Technology, Institute of Mobile Machinery and Processing Machines 

*PELAB – Programming Environment Lab, Dept. Computer Science 
Linköping University, SE-581 83 Linköping, Sweden  

{jens.frenkel, christian.schubert, guenter.kunze}@tu-dresden.de, 
{peter.fritzson,martin.sjolund,adrian.pop}@liu.se 

Abstract 
The paper presents a contribution to a Modelica 
benchmark suite. Basic ideas for a tool independent 
benchmark suite based on Python scripting along with 
models for testing the performance of Modelica com-
pilers regarding large systems of equation are given. 
The automation of running the benchmark suite is 
demonstrated followed by a selection of benchmark 
results to determine the current limits of Modelica tools 
and how they scale for an increasing number of equa-
tions. 
Keywords: benchmark, performance comparison, code 
generation, compiler. 

1 Introduction 
 
Benchmarks are a well-known method to compare the 
capabilities of different software products. Based on the 
results users are able to choose the best software for 
their application. Several commercial and non-
commercial Modelica compilers are available on the 
market, like SimulationX, OpenModelica, JModelica, 
MathModelica, and Dymola.  

Due to the growing number of compilers, a tool in-
dependent and standardized test is needed from which 
the strengths of each compiler can be determined. Such 
a benchmark might also be used by compiler develop-
ers to test their compilers for compliance with the 
Modelica standard. Furthermore it can be used to iden-
tify ways of improving simulation performance. This 
paper tries to develop such a benchmark suite called 
ModeliMark.  
A standard for benchmarking Modelica compilers 
should cover the following topics: 

1. languages features 
2. symbolic manipulation power 
3. numeric solver robustness 
4. compiling performance 
5. simulation/target code performance 

In the first part all language features of Modelica are 
tested showing the coverage of each compiler.  

Symbolic manipulation power refers to testing 
which simplifications and manipulations are under-
taken by the compiler in order to improve simulation 
speed.  

In Numeric solver robustness difficult models are 
simulated comparing their results. Difficult models 
might feature high indices, inconsistent initial values or 
singularities which might require dynamic state selec-
tion for example [1].  

Compiling and simulation performance tests a set of 
predefined models and measures their time for transla-
tion or simulation respectively.  

A main concern of this paper is to investigate how 
current modelica compilers cope with large models, i.e. 
many equations. 

The next chapter gives an overview of previous 
work on comparisons for Modelica compilers. It is fol-
lowed by an overview on model design for benchmark-
ing the scalability with respect to model size. Chapter 
four focuses on how the execution of such a benchmark 
could be automated using Python. A first glance at 
some benchmark results is given in the fifth chapter. 

2 Previous Work 

Every development team of a Modelica compiler al-
ready has a wide range of tests to ensure that the com-
piler is working correctly. Also the Modelica language 
specification and the Modelica Library include numer-
ous examples which can be included in tests. Some of 
them can be used to test for language features whereas 
others could be used for performance measurements. 

At the Modelica Conference in 2008 [8] a bench-
mark library focussing on numerical robustness was 
presented. The authors tried to compare their own 
Modelica compiler MOSILAB with commercial tools. 
Several models ranging from simple tests for language 



                       

features to demanding electrical circuits with disconti-
nuities.  

Further possible benchmark models emerged from 
the efforts of implementing parallel Modelica compil-
ers; see [4] and [5]. 

2 Large models for Performance 
Benchmarks 

The scope of this paper lies not in trying to establish a 
general Modelica benchmark but in providing a set of 
large benchmark models.  

With increasing popularity of Modelica the demand 
for more detailed models increases as well. This leads 
to larger models with a very high number of equations 
and variables. However, large systems is a challenging 
task for Modelica compilers due to the symbolic ap-
proach to Modelica compilation.  

The following models are supposed to evaluate the 
performance and boundaries of available Modelica 
compilers regarding large models. The benchmark 
comprises a set of synthetic models testing different 
aspects. 

The first model is called flat model, containing 
many variables and equations which are tree structured. 

The hierarchical model yields similar complexity 
by recursive use of small submodels.  

A further set of models is designed to test the sym-
bolical effort to extract systems of equations. It consists 
of models with: 

1 a large number of alias variables, for example 
“a=b” or “a=-b”, and only a few other equa-
tions 

2 a linear system of equations 
3 a nonlinear system of equations 
4 a linear system of equations with time discrete 

and continues variables (mixed linear system) 
5 a nonlinear system of equations with time dis-

crete and continues variables (mixed nonlinear 
system) 

2.1 Flat Model 
 

The flat model consists of n variables and n equations 
and has the following form. 
 
model flatclass_n 
  input Real inp; 
  Real v_1; 
  Real v_2; 
  Real v_3; 
  ... 
  Real v_n; 
equation 
  v_1 = 1 + v_2; 

  v_2 = 2 + v_3; 
..… 
  v_(n-1) = (n-1) + v_n; 
  der(v_n) = v_1 + inp; 
end flatclass_n; 
 
The same model may be expressed using a for-loop. 
 
model flatClass_N 
  constant Integer N=100; 
  input Real inp; 
  Real v[N]; 
equation 
  for i in 1:N-1 loop 
    v[i] = i + v[i+1]; 
  end for; 
  der(v[N]) = v[1] + inp; 
end flatClass_N; 

While both models give the same result their syntax is 
different leading to different workloads in the compiler. 
For this comparison only the first model has been con-
sidered. 

Note that a Modelica compiler which is able to 
work with for-loops directly instead of expanding them 
may achieve significantly better results using the sec-
ond formulation. 

2.2 Hierarchical Models 

The following hierarchical model features a mechanical 
system consisting of a long series of masses intercon-
nected by springs. The base class uses the Mode-
lica.Mechanics.Translational library and is shown in 
Figure 1: 

 

               
Figure 1. SpringMass Model 1. 

In the next level two of these submodels are combined  

as shown in Figure 2. This step can be repeated for 
each individual level. 

  
Figure 2. SpringMass Model 2. 

The topmost model connects a submodel to a fixed 
flange. Therefore the number of equations increases 
with the level as given in Table 1.  

Due to the structural information translation may be 
faster than the flat model with equal number of equa-
tions. 

 

 



                       

 

 

 

Level Equations 

1 21 

2 42 

3 84 

4 168 

Table 1: Number of equations for the SpringMass 
models. 

2.3 Alias Model 

Connect equations in Modelica models often lead to 
equations like “a=b” or “a=-b”. Such equations are 
considered to be alias equations since they merely in-
troduce new names for known variables. Hence, addi-
tional alias equations should only lead to minimal 
overhead.  

In order to test this behaviour the model FlatA-
liasClass has been designed. It is very similar to the 
FlatModel only with additional alias equations. The 
number m of additional alias equations can be altered to 
see their influence. 
 
model Flataliasclass_n 
  input Real inp; 
  Real v_1; 
  Real v_2; 
  ... 
  Real v_n; 
 
  Real va_1; 
  Real va_2; 
  ... 
  Real va_m; 
equation 
  va_1 = v_1; 
  va_1 = 1 + v_2; 
  va_2 = v_2; 
  va_2 = 2 + v_3; 
..… 
  va_(n-1) = v_(n-1); 
  va_(n-1) = (n-1) + v_n; 
  der(v_n) = v_1 + inp; 

end Flataliasclass_n; 

 
In addition another model called AliasClass_N has 
been implemented in which alias relations emerge only 
if previous found aliases are replaced. In fact, if all 
alias relations are found only the first equation remains. 

 
model AliasClass_N 
  input Real inp; 
  constant Integer N=4; 
  Real a[2*N+1]; 

equation 
  der(a[1]) = inp; 
  a[2] = -a[1]; 
  a[3] = 2*a[2]+a[1]; 
  for i in 4:2:2*N loop 

     a[i] = a[i-3] + a[i-2] – a[i-1]; 
     a[i+1] = i*a[i]+(i-1)*a[i-1]; 
   end for; 
end AliasClass_N; 
 

2.4 Model with linear or nonlinear Systems of 
Equations 

Dealing with linear or nonlinear systems of equations is 
a basic requirement of every Modelica compiler. The 
main concern of the next four models is to answer the 
question up to which size an equation system can be 
handled by a compiler and what effort it takes.  

2.4.1 Linear Model 

First, there is the Linersysclass_n which possess a 
strong connected linear system of n equations which 
has the unique solution: 

 v = 1+inp/(n-2)*[1,1,…,1] for n > 2. 

 
model Linearsysclass_n 
  input Real inp; 
  Real v_0; 
  Real v_1; 
  Real v_2; 
  ... 
  Real v_n; 
equation 
  - v_0 + v_1 + v_2 … + v_n = n-2 + inp; 
  + v_0 - v_1 + v_2 … + v_n = n-2 + inp; 
  + v_0 + v_1 - v_2 … + v_n = n-2 + inp; 
  … 
  + v_0 + v_1 + v_2 … - v_n = n-2 + inp; 

end Linearsysclass_n; 
 

2.4.2 Mixed Linear Model 

Modelica models often include if-equations which 
lead to time discrete components which themselves 
may be part of an equation system. Such systems of 
equations have to be solved using iterative methods 
which are tested by the following model.  Mixedli-
nersysclass leads to a strongly connected linear 
system including if-equations. 

model Mixedlinearsysclass_n 
  input Real inp; 
  Real v_0; 
  Boolean b_0; 
  Real v_1; 
  Boolean b_1; 
  Real v_2; 
  Boolean b_2; 
  ... 
  Real v_n; 
  Boolean b_n; 



                       

equation 
  b_0 = v_0 > 0; 
  (if b_0 then -v_0 else -2*v_0) + v_1 + 
v_2 … + v_n  = n-2+inp; 
 
  b_1 = v_1 > 0; 
  + v_0 + (if b_1 then -v_1 else -2*v_1) + 
v_2 … + v_n  = n-2+inp; 
 
  b_2 = v_2 > 0; 
  + v_0 + v_1 +(if b_2 then -v_2 else -
2*v_2) … + v_n  = n-2+inp; 
  … 
 
  b_n = v_n > 0; 
  + v_0 + v_1 + v_2 … +(if b_n then -v_n 
else -2*v_n)  = n-2+inp; 

end Mixedlinearsysclass_n; 

2.4.3 Nonlinear Model 

Similar to the linear case, there are models which test 
the Modelica compiler’s ability to solve nonlinear 
equations by a slight alteration of the aforementioned 
models. 
model Nnlinearsysclass_n 
  input Real inp; 
  Real v_0; 
  Real v_1; 
  Real v_2; 
  ... 
  Real v_n; 
equation 
  - sin(v_0) + v_1 + v_2 … + v_n=n-2+inp; 
  + v_0 - sin(v_1) + v_2 … + v_n=n-2+inp; 
  + v_0 + v_1 - sin(v_2) … + v_n=n-2+inp; 
  … 
  + v_0 + v_1 + v_2 … - sin(v_n)=n-2+inp; 

end Nonlinearsysclass_n; 
 

model Mixednonlinearsysclass_n 
  input Real inp; 
  Real v_0; 
  Boolean b_0; 
  Real v_1; 
  Boolean b_1; 
  Real v_2; 
  Boolean b_2; 
  ... 
  Real v_n; 
  Boolean b_n; 
equation 
  b_0 = v_0 > 0; 
  (if b_0 then sin(v_0) else cos(v_0)) + 
v_1 + v_2 … + v_n = n-2+inp; 
  b_1 = v_1 > 0; 
  + v_0 + (if b_1 then sin(v_1) else 
cos(v_1)) + v_2 … + v_n = n-2+inp; 
  b_2 = v_2 > 0; 
  + v_0 + v_1 +(if b_2 then sin(v_2) else 
cos(v_2)) … + v_n = n-2+inp; 
  … 
  b_n = v_n > 0; 
  + v_0 + v_1 + v_2 … +(if b_n then 
sin(v_n) else cos(v_n)) = n-2+inp; 

end Mixednonlinearsysclass_n; 

3 Automating the Benchmark Suite 

The main concern of this paper was to get an answer on 
how current Modelica compilers cope with large mod-
els, i.e. many equations. To get this answer a lot of 
models with an increasing number of equations had to 
be translated and simulated. Hence, the generation of 
the models as well as the control of the Modelica com-
pilers should be fully automated. 

The programming language Python proves to be 
well suited as it allows importing C-Code, starting ex-
ternal processes or even accessing COM-Components 
under Microsoft Windows. In addition Python is an 
object oriented script language which is easy to read 
and for which comprehensive libraries are available.  

The first part of the solution is a model generator as 
shown in Figure 3. It chooses appropriate models, val-
ues for n (number of equations) and writes Modelica 
code which shall then be tested. Each test model is 
stored in a separate Python class which returns Mode-
lica code for a given n. 

  
Figure 3. Benchmark Framework. 

These models are handed over to the Benchmark Com-
ponent. It controls the benchmark process and commu-
nicates via a wrapper with the corresponding Modelica 
compiler. Such a wrapper has to be created for each 
individual compiler. So far wrappers for OpenMode-
lica, JModelica and Dymola have been implemented. 

Based on the usual Modelica translation process, 
which is divided into flattening and symbolic manipu-
lation, the wrappers expose three functions: 

 flatten 
 translate 



                       

 simulate 

Flatten instructs the compiler to parse the Modelica 
code and return the flat model. Translate first flattens 
the model and turns it into a state which can be simu-
lated (executable for example). Simulate flattens, trans-
lates and simulates the model using the standard solver 
and a predefined output interval and stop time. 

Since not every Modelica compiler provides func-
tions to measure the execution time of the flattening, 
translation and simulation process the functionalities 
from the Python library time is used. All results are 
written to a text file. The source code as well as the 
models is freely available at 
http://code.google.com/p/modelimark, and linked from 
www.openmodelica.org.  

4 Benchmark Results 

The following benchmarks were accomplished using a 
Windows 7, 64 Bit System with Intel Core i7 860, 2.80 
GHz and 4.0 GB RAM. 

4.1 Modelica Compilers 

For this benchmark three different Modelica compilers 
were used: 
 OpenModelica compiler Revision 7745 from 

21/01/2011 
 JModelica 1.4 
 Dymola 7.4 

4.2 Flat Model 

As can be seen in Figure 4 Dymola needs the least time 
for translation followed by OpenModelica and JMode-
lica.  

However time increases roughly with the third pow-
er of n which makes Modelica uneconomical for very 
large models. It was found that the upper limit for the 
number of equations is not defined by time but by the 
compiler itself.  

While JModelica and OpenModelica failed at 
around 2000 and 60 000 equations respectively, Dymo-
la managed to translate a model with 160 000 equations 
but Visual Studio 2008 failed to compile the executa-
ble. 

4.3 Hierarchical Models 

Figure 5 shows the results for the hierarchical Model in 
comparison to the flat one. It can be seen that JModeli-
ca and OpenModelica do not benefit. In Dymola how-
ever, the time now only increases with the second pow-
er of n. It is assumed that the internal look up process 
in Dymola exploits the model structure. Nevertheless, 

twice the equations still leads to a fourfold time for 
translation. 

Figure 4: Benchmark Results Flat Model 

 

Figure 5: Flat Model and hierarchical Model 

4.4 Alias Model 

Each graph in the Figures 6, 7, 8 show for each compi-
ler how the time for translation changes with increasing 
percentage of alias equations for a given number of 
equations.  

In the case of Dymola the influence of alias equa-
tions is similar to normal equations.  

In OpenModelica and JModelica alias equations are 
treated more efficiently since their influence is almost 
linear and independent of n. 
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Figure 6: FlatAlilasClass - OMC 7745 

 
Figure 7: FlatAliasClass Dymola 7.4 

 
Figure 8: FlatAliasClass JModelica 1.4 

For the model AliasClass where a recursive substi-
tution is needed, to find all alias relations Dymola 
seems to be more efficient (Figure 9). Further inves-
tigations have shown that the Dymola compiler rep-
laces only the first 11 alias variables. All the other 
alias variables are not detected and calculated for 
each simulation step. 

 

 
Figure 9: AliasClass Model 

4.5 Linear or Nonlinear Systems of Equations 

Looking at Figure 10, 11, 12 it can be seen that the re-
sults for the different types of equation systems hardly 
differ. Again, the implementation in Dymola seems to 
be more efficient compared to JModelica and Open-
Modelica. Note, that the maximum number of un-
knowns which could be solved for in Dymola was 320 
compared to a 160 in OpenModelica and 80 in JMode-
lica. 

5 Conclusions 

This paper tried to encourage the development of a 
standard benchmark suite for Modelica compilers. It 
would give compiler developers insights to find possi-
bilities for improvements and give users the chance to 
compare different compilers. 



                       

The scope of this paper was limited to the behavior 
of current Modelica compilers regarding large models. 
It could be found that Dymola was generally faster than 
OpenModelica and JModelica. However, even Dymola 
does not seem suitable for very large models as it can-
not cope with models that have more than 160000 equ-
ations.  

Furthermore it was found that, depending on the 
model, the time needed for translation grows with 
second or third power of the number of equations. 

In order to continue establishing Modelica as the 
major simulation language better ways of dealing with 
large models have to be found. Some first promising 
ideas are given in [6] and [7]. 

All the models as well as the Python code are freely 
available at http://code.google.com/p/modelimark/, and 
linked from www.openmodelica.org.  
 

Figure 10: Linear and Nonlinear Systems of Equations 
Dymola 7.4 

 
Figure 11: Linear and Nonlinear Systems of Equations 
OMC – 7745 

 
Figure 12: Linear and Nonlinear Systems of Equations 
JModelica 1.4 
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Appendix 

a. FlatModel 

 

n OMC - 7745 Dymola 7.4 Jmodelica 1.4 

  T S T S T S 

10 0,92 0,11 0,39 0,11 3,73 0,21

20 0,94 0,07 0,42 0,09 3,00 0,15

40 0,91 0,09 0,50 0,03 3,19 0,24

80 1,00 0,13 0,41 0,19 3,73 0,25

160 1,21 0,21 0,46 0,14 5,04 0,50

320 1,49 0,35 0,55 0,33 8,73 1,45

640 2,11 0,68 0,59 0,55 19,76 5,66

1280 3,73 1,27 0,75 1,11 59,57 22,30

2560 8,37 2,61 1,34 2,00     

5120 21,75 5,01 3,05 4,06     

10240 69,13 10,01 9,83 7,66     

20480 239,78 21,47 41,18 16,25     

40960 932,63 42,87 245,29 35,01     

b. Hierarchical Models 
 

n OMC – 7745 Dymola 7.4 JModelica 1.4 

  T S T S T S 

42 0,94 0,21 0,70 0,27 10,72 1,57

84 1,14 0,13 0,44 0,07 4,86 0,15

168 1,39 0,3 0,55 0,00 4,55 0,23

336 1,61 0,29 0,56 0,11 6,78 0,41

672 2,63 0,57 0,66 0,13 13,52 1,13

1344 5,58 1,07 0,76 0,35 34,38 3,59

2688 14,67 2,14 1,10 0,36 103,74 13,30

5376 46,60 4,47 1,86 1,70 377,37 50,66

10752 165,47 10,26 3,58 0,94     

21504 666,54 26,01 6,69 7,21     

43008     13,03 7,29     

86016     26,37 46,29     

 

 

c. FlatAliasClass 

 

n alias OMC - 7745 Dymola 7.4 

    T S T S 

1000 0 3,27 1,57 0,59 0,25

1200 200 3,22 1,83 0,72 0,82

1400 400 3,47 2,01 0,69 1,06

1600 600 3,89 2,15 0,79 1,13

1800 800 4,13 1,91 0,79 1,27

2000 0 6,52 2,24 1,03 1,65

2400 400 6,94 2,68 1,16 1,77

2800 800 7,41 2,93 1,32 2,06

3200 1200 8,26 3,67 1,55 2,30

3600 1600 9,14 3,92 1,85 2,41

4000 0 15,80 4,13 2,27 3,10

4800 800 17,56 5,02 2,89 3,34

5600 1600 19,46 5,90 3,50 3,92



                       

6400 2400 21,99 6,61 4,20 4,52

7200 3200 24,69 7,53 5,10 5,19

8000 0 47,53 8,19 6,48 5,97

9600 1600 53,25 9,96 9,25 6,91

11200 3200 59,60 11,45 12,18 7,71

12800 4800 66,90 12,48 14,79 9,23

14400 6400 75,67 14,36 18,97 9,43

16000 0 155,14 16,84 24,88 11,30

19300 3200 174,05 20,12 35,72 14,21

22400 6400 197,41 23,53 51,89 15,18

25600 9600 234,25 26,64 76,05 16,55

28800 12800 261,50 29,90 113,93 9,23

32000 0  114,03 23,75

38400 6400  216,26 28,89

44800 12800  303,47 35,67

51200 19200  405,83 32,61

57600 25600  518,32 32,39

64000 0  669,37 39,99

76800 12800  1001,91 107,16

89600 25600  1379,49 160,05

102400 38400  1860,19 44,43

115200 51200  2262,47 33,65

 

n alias JModelica 1.4 

    T S 

10 0 3,64 0,18 

12 2 2,99 0,21 

14 4 2,87 0,14 

16 6 2,72 0,12 

18 8 2,74 0,14 

20 0 2,85 0,14 

24 4 2,85 0,15 

28 8 2,84 0,13 

32 12 2,86 0,15 

36 16 2,90 0,15 

40 0 3,04 0,15 

48 8 3,00 0,18 

56 16 3,04 0,16 

64 24 3,10 0,18 

72 32 3,05 0,18 

80 0 3,50 0,25 

96 16 3,55 0,26 

112 32 3,58 0,23 

128 48 3,57 0,26 

144 64 3,63 0,23 

160 0 4,87 0,48 

192 32 4,91 0,47 

224 64 5,02 0,49 

256 96 5,13 0,47 

288 128 5,22 0,51 

320 0 8,29 1,38 

384 64 8,70 1,38 

448 128 8,75 1,40 

512 192 9,30 1,43 

576 256 9,06 1,42 

640 0 19,37 5,37 

768 128 19,22 5,27 

896 256 19,40 5,21 

1024 384 19,89 5,28 

1152 512 20,50 5,31 

1280 0 60,08 21,35 

1536 256 59,92 21,11 

1792 512 60,04 21,20 

2048 768 71,17 21,93 

2304 1024 68,60 22,68 

d. AliasClass 

 

n OMC - 7745 Dymola 7.4 JModelica 1.4 

  T S T S T S 

10 0,99 0,08 0,04 0,10 3,63 0,29 

20 1,00 0,10 0,41 0,15 3,36 0,18 

40 0,94 0,14 0,45 0,11 4,39 0,32 

80 1,09 0,21 0,44 0,19 6,73 0,61 

160 1,39 0,49 0,48 0,31 15,26 2,00 

320 2,11 0,66 0,54 0,55 38,80 6,06 

640 5,10 1,29 0,69 0,99 107,41 25,03 

1280 18,53 2,59 0,96 1,95   

2560 128,74 5,06 2,00 3,71   

5120 820,39 10,45 5,42 7,41   

 
 
 



                       

e. LinSysClass 

 

n OMC - 7745 Dymola 7.4 JModelica 1.4 

  T S T S T S 

10 1,05 0,15 0,34 0,08 5,64 0,18 

20 1,45 0,20 0,39 0,06 4,70 0,16 

40 5,33 0,41 0,42 0,09 15,31 0,25 

80 66,56 2,06 0,68 0,09 131,26 0,49 

160 1363,40 10,92 2,24 0,12     

320     13,64 0,11     

f. MixedLinSysClass 

 
n OMC - 7745 Dymola 7.4 

  T S T S 

5 1,05 0,06 0,36 0,02  

10 1,22 0,08 0,54 0,02 

20     0,44 0,06 

40     0,54 0,08 

80     0,73 0,18 

160     2,39 0,26 

320     14,55 0,34 

 

 
 

 
 
 
 
 

g. NonLinSysClass 

 

n OMC - 7745 Dymola 7.4 JModelica 1.4 

  T S T S T S 

10 1,03 0,11 0,45 0,02 8,76 1,24

20 1,43 0,25 0,38 0,06 4,70 0,14

40 5,37 1,02 0,47 0,09 21,50 0,67

80 69,56 6,38 0,76 0,11 181,44 0,42

160 1402,46 45,11 2,36 0,24     

320     14,24 0,38     

h. MixedNonLinSysClass 
 

n Dymola 7.4 

  T S 

10 0,60 0,23

20 0,41 0,11

40 0,45 0,09

80 0,90 0,13

160 2,44 0,30

320 14,93 0,61

 


