

Towards a Benchmark Suite for Modelica Compilers: Large Models

Jens Frenkel+, Christian Schubert+, Günter Kunze+, Peter Fritzson*, Martin Sjölund*, Adrian Pop*
+Dresden University of Technology, Institute of Mobile Machinery and Processing Machines

*PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

{jens.frenkel, christian.schubert, guenter.kunze}@tu-dresden.de,
{peter.fritzson,martin.sjolund,adrian.pop}@liu.se

Abstract
The paper presents a contribution to a Modelica
benchmark suite. Basic ideas for a tool independent
benchmark suite based on Python scripting along with
models for testing the performance of Modelica com-
pilers regarding large systems of equation are given.
The automation of running the benchmark suite is
demonstrated followed by a selection of benchmark
results to determine the current limits of Modelica tools
and how they scale for an increasing number of equa-
tions.
Keywords: benchmark, performance comparison, code
generation, compiler.

1 Introduction

Benchmarks are a well-known method to compare the
capabilities of different software products. Based on the
results users are able to choose the best software for
their application. Several commercial and non-
commercial Modelica compilers are available on the
market, like SimulationX, OpenModelica, JModelica,
MathModelica, and Dymola.

Due to the growing number of compilers, a tool in-
dependent and standardized test is needed from which
the strengths of each compiler can be determined. Such
a benchmark might also be used by compiler develop-
ers to test their compilers for compliance with the
Modelica standard. Furthermore it can be used to iden-
tify ways of improving simulation performance. This
paper tries to develop such a benchmark suite called
ModeliMark.
A standard for benchmarking Modelica compilers
should cover the following topics:

1. languages features
2. symbolic manipulation power
3. numeric solver robustness
4. compiling performance
5. simulation/target code performance

In the first part all language features of Modelica are
tested showing the coverage of each compiler.

Symbolic manipulation power refers to testing
which simplifications and manipulations are under-
taken by the compiler in order to improve simulation
speed.

In Numeric solver robustness difficult models are
simulated comparing their results. Difficult models
might feature high indices, inconsistent initial values or
singularities which might require dynamic state selec-
tion for example [1].

Compiling and simulation performance tests a set of
predefined models and measures their time for transla-
tion or simulation respectively.

A main concern of this paper is to investigate how
current modelica compilers cope with large models, i.e.
many equations.

The next chapter gives an overview of previous
work on comparisons for Modelica compilers. It is fol-
lowed by an overview on model design for benchmark-
ing the scalability with respect to model size. Chapter
four focuses on how the execution of such a benchmark
could be automated using Python. A first glance at
some benchmark results is given in the fifth chapter.

2 Previous Work

Every development team of a Modelica compiler al-
ready has a wide range of tests to ensure that the com-
piler is working correctly. Also the Modelica language
specification and the Modelica Library include numer-
ous examples which can be included in tests. Some of
them can be used to test for language features whereas
others could be used for performance measurements.

At the Modelica Conference in 2008 [8] a bench-
mark library focussing on numerical robustness was
presented. The authors tried to compare their own
Modelica compiler MOSILAB with commercial tools.
Several models ranging from simple tests for language

features to demanding electrical circuits with disconti-
nuities.

Further possible benchmark models emerged from
the efforts of implementing parallel Modelica compil-
ers; see [4] and [5].

2 Large models for Performance
Benchmarks

The scope of this paper lies not in trying to establish a
general Modelica benchmark but in providing a set of
large benchmark models.

With increasing popularity of Modelica the demand
for more detailed models increases as well. This leads
to larger models with a very high number of equations
and variables. However, large systems is a challenging
task for Modelica compilers due to the symbolic ap-
proach to Modelica compilation.

The following models are supposed to evaluate the
performance and boundaries of available Modelica
compilers regarding large models. The benchmark
comprises a set of synthetic models testing different
aspects.

The first model is called flat model, containing
many variables and equations which are tree structured.

The hierarchical model yields similar complexity
by recursive use of small submodels.

A further set of models is designed to test the sym-
bolical effort to extract systems of equations. It consists
of models with:

1 a large number of alias variables, for example
“a=b” or “a=-b”, and only a few other equa-
tions

2 a linear system of equations
3 a nonlinear system of equations
4 a linear system of equations with time discrete

and continues variables (mixed linear system)
5 a nonlinear system of equations with time dis-

crete and continues variables (mixed nonlinear
system)

2.1 Flat Model

The flat model consists of n variables and n equations
and has the following form.

model flatclass_n
 input Real inp;
 Real v_1;
 Real v_2;
 Real v_3;
 ...
 Real v_n;
equation
 v_1 = 1 + v_2;

 v_2 = 2 + v_3;
..…
 v_(n-1) = (n-1) + v_n;
 der(v_n) = v_1 + inp;
end flatclass_n;

The same model may be expressed using a for-loop.

model flatClass_N
 constant Integer N=100;
 input Real inp;
 Real v[N];
equation
 for i in 1:N-1 loop
 v[i] = i + v[i+1];
 end for;
 der(v[N]) = v[1] + inp;
end flatClass_N;

While both models give the same result their syntax is
different leading to different workloads in the compiler.
For this comparison only the first model has been con-
sidered.

Note that a Modelica compiler which is able to
work with for-loops directly instead of expanding them
may achieve significantly better results using the sec-
ond formulation.

2.2 Hierarchical Models

The following hierarchical model features a mechanical
system consisting of a long series of masses intercon-
nected by springs. The base class uses the Mode-
lica.Mechanics.Translational library and is shown in
Figure 1:

Figure 1. SpringMass Model 1.

In the next level two of these submodels are combined

as shown in Figure 2. This step can be repeated for
each individual level.

Figure 2. SpringMass Model 2.

The topmost model connects a submodel to a fixed
flange. Therefore the number of equations increases
with the level as given in Table 1.

Due to the structural information translation may be
faster than the flat model with equal number of equa-
tions.

Level Equations

1 21

2 42

3 84

4 168

Table 1: Number of equations for the SpringMass
models.

2.3 Alias Model

Connect equations in Modelica models often lead to
equations like “a=b” or “a=-b”. Such equations are
considered to be alias equations since they merely in-
troduce new names for known variables. Hence, addi-
tional alias equations should only lead to minimal
overhead.

In order to test this behaviour the model FlatA-
liasClass has been designed. It is very similar to the
FlatModel only with additional alias equations. The
number m of additional alias equations can be altered to
see their influence.

model Flataliasclass_n
 input Real inp;
 Real v_1;
 Real v_2;
 ...
 Real v_n;

 Real va_1;
 Real va_2;
 ...
 Real va_m;
equation
 va_1 = v_1;
 va_1 = 1 + v_2;
 va_2 = v_2;
 va_2 = 2 + v_3;
..…
 va_(n-1) = v_(n-1);
 va_(n-1) = (n-1) + v_n;
 der(v_n) = v_1 + inp;

end Flataliasclass_n;

In addition another model called AliasClass_N has
been implemented in which alias relations emerge only
if previous found aliases are replaced. In fact, if all
alias relations are found only the first equation remains.

model AliasClass_N
 input Real inp;
 constant Integer N=4;
 Real a[2*N+1];

equation
 der(a[1]) = inp;
 a[2] = -a[1];
 a[3] = 2*a[2]+a[1];
 for i in 4:2:2*N loop

 a[i] = a[i-3] + a[i-2] – a[i-1];
 a[i+1] = i*a[i]+(i-1)*a[i-1];
 end for;
end AliasClass_N;

2.4 Model with linear or nonlinear Systems of
Equations

Dealing with linear or nonlinear systems of equations is
a basic requirement of every Modelica compiler. The
main concern of the next four models is to answer the
question up to which size an equation system can be
handled by a compiler and what effort it takes.

2.4.1 Linear Model

First, there is the Linersysclass_n which possess a
strong connected linear system of n equations which
has the unique solution:

 v = 1+inp/(n-2)*[1,1,…,1] for n > 2.

model Linearsysclass_n
 input Real inp;
 Real v_0;
 Real v_1;
 Real v_2;
 ...
 Real v_n;
equation
 - v_0 + v_1 + v_2 … + v_n = n-2 + inp;
 + v_0 - v_1 + v_2 … + v_n = n-2 + inp;
 + v_0 + v_1 - v_2 … + v_n = n-2 + inp;
 …
 + v_0 + v_1 + v_2 … - v_n = n-2 + inp;

end Linearsysclass_n;

2.4.2 Mixed Linear Model

Modelica models often include if-equations which
lead to time discrete components which themselves
may be part of an equation system. Such systems of
equations have to be solved using iterative methods
which are tested by the following model. Mixedli-
nersysclass leads to a strongly connected linear
system including if-equations.

model Mixedlinearsysclass_n
 input Real inp;
 Real v_0;
 Boolean b_0;
 Real v_1;
 Boolean b_1;
 Real v_2;
 Boolean b_2;
 ...
 Real v_n;
 Boolean b_n;

equation
 b_0 = v_0 > 0;
 (if b_0 then -v_0 else -2*v_0) + v_1 +
v_2 … + v_n = n-2+inp;

 b_1 = v_1 > 0;
 + v_0 + (if b_1 then -v_1 else -2*v_1) +
v_2 … + v_n = n-2+inp;

 b_2 = v_2 > 0;
 + v_0 + v_1 +(if b_2 then -v_2 else -
2*v_2) … + v_n = n-2+inp;
 …

 b_n = v_n > 0;
 + v_0 + v_1 + v_2 … +(if b_n then -v_n
else -2*v_n) = n-2+inp;

end Mixedlinearsysclass_n;

2.4.3 Nonlinear Model

Similar to the linear case, there are models which test
the Modelica compiler’s ability to solve nonlinear
equations by a slight alteration of the aforementioned
models.
model Nnlinearsysclass_n
 input Real inp;
 Real v_0;
 Real v_1;
 Real v_2;
 ...
 Real v_n;
equation
 - sin(v_0) + v_1 + v_2 … + v_n=n-2+inp;
 + v_0 - sin(v_1) + v_2 … + v_n=n-2+inp;
 + v_0 + v_1 - sin(v_2) … + v_n=n-2+inp;
 …
 + v_0 + v_1 + v_2 … - sin(v_n)=n-2+inp;

end Nonlinearsysclass_n;

model Mixednonlinearsysclass_n
 input Real inp;
 Real v_0;
 Boolean b_0;
 Real v_1;
 Boolean b_1;
 Real v_2;
 Boolean b_2;
 ...
 Real v_n;
 Boolean b_n;
equation
 b_0 = v_0 > 0;
 (if b_0 then sin(v_0) else cos(v_0)) +
v_1 + v_2 … + v_n = n-2+inp;
 b_1 = v_1 > 0;
 + v_0 + (if b_1 then sin(v_1) else
cos(v_1)) + v_2 … + v_n = n-2+inp;
 b_2 = v_2 > 0;
 + v_0 + v_1 +(if b_2 then sin(v_2) else
cos(v_2)) … + v_n = n-2+inp;
 …
 b_n = v_n > 0;
 + v_0 + v_1 + v_2 … +(if b_n then
sin(v_n) else cos(v_n)) = n-2+inp;

end Mixednonlinearsysclass_n;

3 Automating the Benchmark Suite

The main concern of this paper was to get an answer on
how current Modelica compilers cope with large mod-
els, i.e. many equations. To get this answer a lot of
models with an increasing number of equations had to
be translated and simulated. Hence, the generation of
the models as well as the control of the Modelica com-
pilers should be fully automated.

The programming language Python proves to be
well suited as it allows importing C-Code, starting ex-
ternal processes or even accessing COM-Components
under Microsoft Windows. In addition Python is an
object oriented script language which is easy to read
and for which comprehensive libraries are available.

The first part of the solution is a model generator as
shown in Figure 3. It chooses appropriate models, val-
ues for n (number of equations) and writes Modelica
code which shall then be tested. Each test model is
stored in a separate Python class which returns Mode-
lica code for a given n.

Figure 3. Benchmark Framework.

These models are handed over to the Benchmark Com-
ponent. It controls the benchmark process and commu-
nicates via a wrapper with the corresponding Modelica
compiler. Such a wrapper has to be created for each
individual compiler. So far wrappers for OpenMode-
lica, JModelica and Dymola have been implemented.

Based on the usual Modelica translation process,
which is divided into flattening and symbolic manipu-
lation, the wrappers expose three functions:

 flatten
 translate

 simulate

Flatten instructs the compiler to parse the Modelica
code and return the flat model. Translate first flattens
the model and turns it into a state which can be simu-
lated (executable for example). Simulate flattens, trans-
lates and simulates the model using the standard solver
and a predefined output interval and stop time.

Since not every Modelica compiler provides func-
tions to measure the execution time of the flattening,
translation and simulation process the functionalities
from the Python library time is used. All results are
written to a text file. The source code as well as the
models is freely available at
http://code.google.com/p/modelimark, and linked from
www.openmodelica.org.

4 Benchmark Results

The following benchmarks were accomplished using a
Windows 7, 64 Bit System with Intel Core i7 860, 2.80
GHz and 4.0 GB RAM.

4.1 Modelica Compilers

For this benchmark three different Modelica compilers
were used:
 OpenModelica compiler Revision 7745 from

21/01/2011
 JModelica 1.4
 Dymola 7.4

4.2 Flat Model

As can be seen in Figure 4 Dymola needs the least time
for translation followed by OpenModelica and JMode-
lica.

However time increases roughly with the third pow-
er of n which makes Modelica uneconomical for very
large models. It was found that the upper limit for the
number of equations is not defined by time but by the
compiler itself.

While JModelica and OpenModelica failed at
around 2000 and 60 000 equations respectively, Dymo-
la managed to translate a model with 160 000 equations
but Visual Studio 2008 failed to compile the executa-
ble.

4.3 Hierarchical Models

Figure 5 shows the results for the hierarchical Model in
comparison to the flat one. It can be seen that JModeli-
ca and OpenModelica do not benefit. In Dymola how-
ever, the time now only increases with the second pow-
er of n. It is assumed that the internal look up process
in Dymola exploits the model structure. Nevertheless,

twice the equations still leads to a fourfold time for
translation.

Figure 4: Benchmark Results Flat Model

Figure 5: Flat Model and hierarchical Model

4.4 Alias Model

Each graph in the Figures 6, 7, 8 show for each compi-
ler how the time for translation changes with increasing
percentage of alias equations for a given number of
equations.

In the case of Dymola the influence of alias equa-
tions is similar to normal equations.

In OpenModelica and JModelica alias equations are
treated more efficiently since their influence is almost
linear and independent of n.

0,1

1

10

100

1000

10 100 1000 10000 100000Ti
m
e
 [
s]
 fo
r
Tr
an
sl
at
io
n

Number of Equations

Flat Model

OMC ‐ 7745 Dymola 7.4 Jmodelica 1.4

0,1

1

10

100

1000

10 100 1000 10000 100000Ti
m
e
[s
] f
or
 T
ra
ns
la
ti
on

Number of Equations

Flat Model and Hierarchical Model

OMC ‐ 7745

Dymola 7.4

Jmodelica 1.4

Dymola 7.4 hierarchical model

OMC ‐ 7089 hierarchical model

Figure 6: FlatAlilasClass - OMC 7745

Figure 7: FlatAliasClass Dymola 7.4

Figure 8: FlatAliasClass JModelica 1.4

For the model AliasClass where a recursive substi-
tution is needed, to find all alias relations Dymola
seems to be more efficient (Figure 9). Further inves-
tigations have shown that the Dymola compiler rep-
laces only the first 11 alias variables. All the other
alias variables are not detected and calculated for
each simulation step.

Figure 9: AliasClass Model

4.5 Linear or Nonlinear Systems of Equations

Looking at Figure 10, 11, 12 it can be seen that the re-
sults for the different types of equation systems hardly
differ. Again, the implementation in Dymola seems to
be more efficient compared to JModelica and Open-
Modelica. Note, that the maximum number of un-
knowns which could be solved for in Dymola was 320
compared to a 160 in OpenModelica and 80 in JMode-
lica.

5 Conclusions

This paper tried to encourage the development of a
standard benchmark suite for Modelica compilers. It
would give compiler developers insights to find possi-
bilities for improvements and give users the chance to
compare different compilers.

The scope of this paper was limited to the behavior
of current Modelica compilers regarding large models.
It could be found that Dymola was generally faster than
OpenModelica and JModelica. However, even Dymola
does not seem suitable for very large models as it can-
not cope with models that have more than 160000 equ-
ations.

Furthermore it was found that, depending on the
model, the time needed for translation grows with
second or third power of the number of equations.

In order to continue establishing Modelica as the
major simulation language better ways of dealing with
large models have to be found. Some first promising
ideas are given in [6] and [7].

All the models as well as the Python code are freely
available at http://code.google.com/p/modelimark/, and
linked from www.openmodelica.org.

Figure 10: Linear and Nonlinear Systems of Equations
Dymola 7.4

Figure 11: Linear and Nonlinear Systems of Equations
OMC – 7745

Figure 12: Linear and Nonlinear Systems of Equations
JModelica 1.4

References
[1] S. Mattsson, G. Söderlind: Index reduction in

differential-algebraic equations using dummy
derivatives. SIAM J. Sci. Statist. Comput.,
14:677– 692, 1993.

[2] Peter Fritzson: Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Page 57ff, Wiley IEEE Press, 2004.

[3] O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F.
Breitenecker, C. Nytsch-Geusen: Comparison
of Different Modelica-Based Simulators Using
Benchmark Tasks, in Procedings of Modelica
Conference 2008

[4] M. Maggio, K. Stavåker, F. Donida, F.
Casella, P.Fritzson: Parallel Simulation of
Equation-based Object-Oriented Models with
Quantized State Systems on a GPU, in Proced-
ings of the 7th Modelica Conference 2009

[5] H. Lundvall, K. Stavåker, P. Fritzson, C. Kess-
ler: Automatic parallelization of simulation
code for equation-based models with software
pipelining and measurements on three plat-
forms. in ACM SIGARCH Computer Architec-
ture News, Vol. 36, No. 5, December 2008.

[6] D Zimmer: Module-Preserving Compila-tion of
Modelica Models,Proceedings 7th Modelica
Conference, Como, Italy, Sep. 20-22, 2009.

[7] C. Höger, F. Lorenzen, P. Pepper: Notes on the
Separate Compilation of Modelica, The 3rd In-
ternational Work-shop on Equation-Based Ob-
ject-Oriented Modeling Languages and Tools,
Oslo, Norway, October 3, 2010

Appendix

a. FlatModel

n OMC - 7745 Dymola 7.4 Jmodelica 1.4

 T S T S T S

10 0,92 0,11 0,39 0,11 3,73 0,21

20 0,94 0,07 0,42 0,09 3,00 0,15

40 0,91 0,09 0,50 0,03 3,19 0,24

80 1,00 0,13 0,41 0,19 3,73 0,25

160 1,21 0,21 0,46 0,14 5,04 0,50

320 1,49 0,35 0,55 0,33 8,73 1,45

640 2,11 0,68 0,59 0,55 19,76 5,66

1280 3,73 1,27 0,75 1,11 59,57 22,30

2560 8,37 2,61 1,34 2,00

5120 21,75 5,01 3,05 4,06

10240 69,13 10,01 9,83 7,66

20480 239,78 21,47 41,18 16,25

40960 932,63 42,87 245,29 35,01

b. Hierarchical Models

n OMC – 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

42 0,94 0,21 0,70 0,27 10,72 1,57

84 1,14 0,13 0,44 0,07 4,86 0,15

168 1,39 0,3 0,55 0,00 4,55 0,23

336 1,61 0,29 0,56 0,11 6,78 0,41

672 2,63 0,57 0,66 0,13 13,52 1,13

1344 5,58 1,07 0,76 0,35 34,38 3,59

2688 14,67 2,14 1,10 0,36 103,74 13,30

5376 46,60 4,47 1,86 1,70 377,37 50,66

10752 165,47 10,26 3,58 0,94

21504 666,54 26,01 6,69 7,21

43008 13,03 7,29

86016 26,37 46,29

c. FlatAliasClass

n alias OMC - 7745 Dymola 7.4

 T S T S

1000 0 3,27 1,57 0,59 0,25

1200 200 3,22 1,83 0,72 0,82

1400 400 3,47 2,01 0,69 1,06

1600 600 3,89 2,15 0,79 1,13

1800 800 4,13 1,91 0,79 1,27

2000 0 6,52 2,24 1,03 1,65

2400 400 6,94 2,68 1,16 1,77

2800 800 7,41 2,93 1,32 2,06

3200 1200 8,26 3,67 1,55 2,30

3600 1600 9,14 3,92 1,85 2,41

4000 0 15,80 4,13 2,27 3,10

4800 800 17,56 5,02 2,89 3,34

5600 1600 19,46 5,90 3,50 3,92

6400 2400 21,99 6,61 4,20 4,52

7200 3200 24,69 7,53 5,10 5,19

8000 0 47,53 8,19 6,48 5,97

9600 1600 53,25 9,96 9,25 6,91

11200 3200 59,60 11,45 12,18 7,71

12800 4800 66,90 12,48 14,79 9,23

14400 6400 75,67 14,36 18,97 9,43

16000 0 155,14 16,84 24,88 11,30

19300 3200 174,05 20,12 35,72 14,21

22400 6400 197,41 23,53 51,89 15,18

25600 9600 234,25 26,64 76,05 16,55

28800 12800 261,50 29,90 113,93 9,23

32000 0 114,03 23,75

38400 6400 216,26 28,89

44800 12800 303,47 35,67

51200 19200 405,83 32,61

57600 25600 518,32 32,39

64000 0 669,37 39,99

76800 12800 1001,91 107,16

89600 25600 1379,49 160,05

102400 38400 1860,19 44,43

115200 51200 2262,47 33,65

n alias JModelica 1.4

 T S

10 0 3,64 0,18

12 2 2,99 0,21

14 4 2,87 0,14

16 6 2,72 0,12

18 8 2,74 0,14

20 0 2,85 0,14

24 4 2,85 0,15

28 8 2,84 0,13

32 12 2,86 0,15

36 16 2,90 0,15

40 0 3,04 0,15

48 8 3,00 0,18

56 16 3,04 0,16

64 24 3,10 0,18

72 32 3,05 0,18

80 0 3,50 0,25

96 16 3,55 0,26

112 32 3,58 0,23

128 48 3,57 0,26

144 64 3,63 0,23

160 0 4,87 0,48

192 32 4,91 0,47

224 64 5,02 0,49

256 96 5,13 0,47

288 128 5,22 0,51

320 0 8,29 1,38

384 64 8,70 1,38

448 128 8,75 1,40

512 192 9,30 1,43

576 256 9,06 1,42

640 0 19,37 5,37

768 128 19,22 5,27

896 256 19,40 5,21

1024 384 19,89 5,28

1152 512 20,50 5,31

1280 0 60,08 21,35

1536 256 59,92 21,11

1792 512 60,04 21,20

2048 768 71,17 21,93

2304 1024 68,60 22,68

d. AliasClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 0,99 0,08 0,04 0,10 3,63 0,29

20 1,00 0,10 0,41 0,15 3,36 0,18

40 0,94 0,14 0,45 0,11 4,39 0,32

80 1,09 0,21 0,44 0,19 6,73 0,61

160 1,39 0,49 0,48 0,31 15,26 2,00

320 2,11 0,66 0,54 0,55 38,80 6,06

640 5,10 1,29 0,69 0,99 107,41 25,03

1280 18,53 2,59 0,96 1,95

2560 128,74 5,06 2,00 3,71

5120 820,39 10,45 5,42 7,41

e. LinSysClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 1,05 0,15 0,34 0,08 5,64 0,18

20 1,45 0,20 0,39 0,06 4,70 0,16

40 5,33 0,41 0,42 0,09 15,31 0,25

80 66,56 2,06 0,68 0,09 131,26 0,49

160 1363,40 10,92 2,24 0,12

320 13,64 0,11

f. MixedLinSysClass

n OMC - 7745 Dymola 7.4

 T S T S

5 1,05 0,06 0,36 0,02

10 1,22 0,08 0,54 0,02

20 0,44 0,06

40 0,54 0,08

80 0,73 0,18

160 2,39 0,26

320 14,55 0,34

g. NonLinSysClass

n OMC - 7745 Dymola 7.4 JModelica 1.4

 T S T S T S

10 1,03 0,11 0,45 0,02 8,76 1,24

20 1,43 0,25 0,38 0,06 4,70 0,14

40 5,37 1,02 0,47 0,09 21,50 0,67

80 69,56 6,38 0,76 0,11 181,44 0,42

160 1402,46 45,11 2,36 0,24

320 14,24 0,38

h. MixedNonLinSysClass

n Dymola 7.4

 T S

10 0,60 0,23

20 0,41 0,11

40 0,45 0,09

80 0,90 0,13

160 2,44 0,30

320 14,93 0,61

