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Abstract

The friction forces generated during braking between
brake pads and discs produce high thermal gradients
on the rubbing surfaces. These thermal gradients may
cause braking problems such as hot spotting and the
associated hot judder phenomenon in the frequency
range below 100 Hz.

Some consequences of these undesirable vibra-
tions are comfort reductions, a defective braking pro-
cess, inhomogeneous wear, cutbacks of the brake per-
formance and even damage of brake components.

The present paper proposes a modeling concept
that is targeted on this field of application and in-
troduces the new Modelica class ThermoelasticPlate,
which is implemented in the DLR FlexibleBodies li-
brary.

Keywords: Disc brake, Modal multifield ap-
proach, Thermoelasticity

1 Introduction

Friction braking is necessarily related to high thermal
loads which lead to high thermal gradients at the sur-
face of brake discs. It is a known phenomenon that
these thermal loads can initiate the onset of unevenly
distributed hot spots or bands which in turn results
in thermally deformed brake discs [1], [2]. Since the
brake pads then slide upon a non-smooth surface while
the brake disc rotates, the brake system vibrates, noise
is generated and undesirable wear occurs.

Besides experimental studies the finite element
method (FEM) [3], [4], [5] [6] or analytical techniques
[7] [8] are utilized to analyze the thermo-elastic behav-
ior of brakes in literature. Both methods have advan-
tages and provide valuable results, but both methods
are not well suited, if complex scenarios such as the
interaction of brakes with suspensions or vehicle con-
trol systems are investigated and a system dynamical
point of view is adopted.

To this purpose the present paper proposes a novel
model of a moderately simplified brake disc. Depend-
ing on the user input the thermo-elastic behavior of
brake discs is described with approximately 100 up to
1000 degrees of freedom.

The thermal field of the disc is discretized in
three dimensions in Eulerian representation, an annu-
lar Kirchhoff plate is adapted to evaluate the deforma-
tions according to the quasi-static thermo-elastic the-
ory [9, Ch. 2].

In circumferential direction the disc is assumed
to be rotational symmetric, in axial direction differ-
ent layers with different heat capacity and conduc-
tion properties and multiple surfaces, where cooling
by convection occurs, may be defined.

In order to implement this concept the Modelica
class ThermoelasticPlate has been introduced into the
commercial DLR FlexibleBodies library. This paper
presents the underlying theory on thermal and thermo-
elastic fields, explains the user interface of the Ther-
moelasticPlate class and gives an simulation example.
The final section gives an outlook to further efforts in
research and modeling of friction brakes and its vali-
dation, which is supposed to be initiated by the novel
modeling approach.

2 Thermal Field

2.1 Weak Field Equations

In order to describe the thermal behaviour of the
brake disc the weak equations for the temperature field
ϑ(c, t) as functions of the spatial position in cylindri-
cal coordinates c = (r, φ, z)T and time t are deduced
from the principle of virtual temperature, see e.g. [10,
(7.7)] or [11, (1.3.33)]:



∫
V

[−(∇δϑ)Tq+ρc ϑ̇δϑ] dV + . . .

. . .+
∫
B

qT
BnBδϑ dB = 0 ,

(1)

where ρ denotes the density, c the specific heat capac-
ity, dB the boundary element and nB the outer unit
normal vector. q symbolizes the heat flux according
to Fourier’s law of heat conduction depending on the
temperature gradient ∇ϑ and the thermal conductivity
matrix � [9, (1.12.16)]:

q =−�∇ϑ (2)

The boundary heat flux qB may be given explicitly
or, if convection occurs, may be specified by the film
coefficient h f and the bulk temperature ϑ∞ of the fluid
[9, Sec. 5.6]:

qT
BnB =−qB−h f (ϑB−ϑ∞) . (3)

2.2 Modal Approach

The discretization of the scalar temperature is per-
formed using the Ritz approximation that allows to
separate the thermal field description by a finite-
dimensional linear combination of two parts, the first
one considers thermal modes and is spatial depen-
dent, i.e. ΦΦΦϑ = ΦΦΦϑ(c) and the second one repre-
sent the modal amplitudes and is time dependent, i.e.
zϑ = zϑ(t):

ϑ(c, t) =ΦΦΦϑ(c)zϑ(t) (4)

The spatial mode functions are formulated using the
separation approach of Bernoulli for the spatial coor-
dinates as well, so that (4) may be rewritten as follows:

n

∑
i=1

Φϑi(c)zϑi(t) =
n

∑
i=1

Ri(r) Ψi(φ) Zi(z) zϑi(t) =

=
lm

∑
l=1

km

∑
k=0

mm

∑
m=1

Rl(r) ⋅ cos(kφ) ⋅Zm(z) ⋅ zϑi(t)+

+
lm

∑
l=1

km

∑
k=1

mm

∑
m=1

Rl(r) ⋅ sin(kφ) ⋅Zm(z) ⋅ zϑi(t) ,

with i = 1,2, . . . ,n , n = (lmmm)(2km +1) .

(5)

According to Walter Ritz [12], the trial functions
have to be linearly independent and components of a
complete system, so that the number of i may be in-
creased as needed in order to improve the approxi-
mation. For Rl(r) and Zm(z) cubic B-splines [13] as

Figure 1: Example set of cubic B-splines to discretize
the thermal field in radial and axial direction.

shown in Fig. 1 have been chosen as trial functions in
radial and axial direction, respectively.

The harmonic waves (or Fourier series expan-
sion) Ψi(φ) are appropriate in circumferential direc-
tion, since

∙ they allow to represent cyclic properties, i.e.
Ψi(φ) = Ψi(φ+2π),

∙ they are simple to integrate from 0 to 2π,

∙ their orthogonality leads to block-diagonal sys-
tem matrices, i.e. the entire system of equations
is split up into decoupled sub-systems,

∙ they will later on be exploited to provide a Eule-
rian description of the thermo-elastic plate.

2.3 Discretized Field Equations

If (5) is inserted into (1), the volume integrals can be
separated from the terms that dependent on time. As a
result, the linear thermal field equation is obtained:

Cϑϑżϑ +(Kϑϑ +KϑR)zϑ =QϑN qB +QϑR ϑ∞ , (6)

where the volume integrals are defined, inter alia using
the abbreviationBϑ :=∇ΦΦΦϑ, as follows [14, Tab. 2.5]:

the heat capacity matrix: Cϑϑ :=
∫

V
ρc ΦΦΦT

ϑ
ΦΦΦϑ dV

the conductivity matrix: Kϑϑ :=
∫

V
BT

ϑ
�Bϑ dV

the Robin load matrix: KϑR :=
∫

B
h f ΦΦΦT

ϑ
ΦΦΦϑ dB

the Robin load vector: QϑR :=
∫

B
h f ΦΦΦT

ϑ
dB

the Neumann load vector: QϑN :=
∫

B
ΦΦΦT

ϑ
dB



These volume integrals may therefore be evalu-
ated in advance to the simulation or time integration,
respectively.

2.4 The Eulerian Description

Figure 2: Coordinate transformation with angle χ, that
leads from the Lagrangian to the Eulerian description.

It is now considered that the brake disc performs
a rotation around its central axis specified by the angle
χ(t). So far the temperature field is described in the
so-called Lagrangian point of view [15, Sec. I.3], i.e.
the reference frame follows the rotation as it is shown
for the coordinate system named B in Fig. 2.

However for the specific use case treated here it
may make sense to resolve the temperature field of the
disc in frame A in Fig. 2. In other words, the observer
does not rotate with the disc but looks on the plate from
the outside, from a point in rest concerning the rotation
with angle χ(t).

This concept is the so-called Eulerian description
[15, Sec. I.4] and is widely used in fluid dynamics,
where the motion state of the fluid at a fixed point in
space is presented. Due to the rotational symmetry
properties of the brake disc the Eulerian description
can here be formulated in an elegant and convenient
way.

For theoretical derivation the coordinate transfor-
mation

φ = θ−χ (7)

is defined, where θ specifies the angular position of an
observed point on the brake disc resolved with respect
to the Eulerian reference system A in Fig. 2.

Furthermore it is assumed that for every trial func-
tion in (5) that employs a sin(kφ)-term an associated
trial function is present where the sinus- is replaced by
the cosinus-function only, but Rl(r), Zm(z) and k are
identical, so that mode shape couples c1 and c2 exist:

c1(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ sin(kφ) ,

c2(r,φ,z) = Rl(r) ⋅Zm(z) ⋅ cos(kφ) .
(8)

If the following identities

sin(kφ) = sin(kθ)cos(kχ)− cos(kθ)sin(kχ) ,

cos(kφ) = cos(kθ)cos(kχ)+ sin(kθ)sin(kχ)
(9)

are inserted into (8), an associated mode couple
c̄1(r,θ,z) and c̄2(r,θ,z) defined with respect to frame
A appears:

c1 = RlZm sin(kθ)︸ ︷︷ ︸
:=c̄1(r,θ,z)

cos(kχ)−

−RlZm cos(kθ)︸ ︷︷ ︸
:=c̄2(r,θ,z)

sin(kχ) ,

c2 = c̄1(r,θ,z)sin(kχ)+ c̄2(r,θ,z)cos(kχ) .

(10)

As a result of suitable transformations it may also be
written:

c̄1(r,θ,z) = c2 sin(kχ)+ c1 cos(kχ) ,

c̄2(r,θ,z) = c2 cos(kχ)− c1 sin(kχ) .
(11)

The mode functions c̄1(r,θ,z) and c̄2(r,θ,z) are
defined in the Eulerian reference system A and are
linear combinations of the mode functions c1(r,φ,z)
and c2(r,φ,z) described in the Lagrangian frame B ,
whereas the combination depends on χ(t).

This information can be exploited in order to de-
fine a transformation: a thermal field resolved in the
Lagrangian frame can be transformed to be resolved in
the Eulerian frame and vice versa. Of course the phys-
ical temperature field itself does not change, but its
resolution does so that the numerical values describing
the field will be different in frame A or B , respectively.

In practice the transformation is formulated in
terms of the modal amplitudes zϑi(t) which are the
thermal states in (6):

z̄ϑi1(t) = sin(kχ(t))zϑi2(t)+ cos(kχ(t))zϑi1(t) ,

z̄ϑi2(t) = cos(kχ(t))zϑi2(t)− sin(kχ(t))zϑi1(t) .
(12)

Again, the new modal amplitudes in the Eulerian
frame z̄ϑi(t) are expressed as a linear combination of
modal amplitudes in the Lagrangian frame zϑi(t) and
it is just a matter of convenience and practicability in
which coordinates the thermal field equations are ac-
tually evaluated.

One particularity has been ignored so far. For
trial functions with k = 0 no mode couple with c1 and
c2 according to (8) exists, since no associated sinus-
function is introduced in (5). As a consequence the
transformation (12) is not defined for such modes.
However, trial functions with k = 0 represent rota-
tional symmetric fields since the dependency on φ is



eliminated in (5) due to the term cos(kφ). As a conse-
quence mode shapes with k = 0 are invariant with re-
spect to rotations with angle χ or in other words: The
modal coordinates zϑi(t) related to k = 0 are identical
in the Eulerian and the Lagrangian description and no
transformation is needed.

3 Mechanical Field

The present paper is focused on the thermo-elastic in-
terrelation that rules the behavior of brake discs in
frequency range below 100 Hz. Note that there is a
complementary paper presented on this Modelica User
Conference which is dedicated to higher frequencies
in order to cope e.g. with brake squeal phenomena
[16]. However here, it is supposed that the excitation
is much lower than the lowest natural frequency of the
brake disc. In particular the following assumption are
made:

∙ The structural deformations of the brake disc are
dominated by its elasticity or thermo-elasticity,
respectively, while inertia effects are negligible.
The brake disc deforms in a quasi-static man-
ner. This statement is related to the so-called
Duhamel’s assumption which argues on the dif-
ferent time-scales with which changes in the tem-
perature or deformation field usaully proceed, cp.
[9, Sec. 2.5].

∙ A literature review on the characteristics of
thermo-elastic brake disc deformation give rea-
son to the assumption that plate bending in some
cases even plate buckling is the governing defor-
mation mechanism, see [7], [1], [4]. For example:
all experimental studies describe e.g. hot spots to
be located alternatively on the two disc surfaces
in anti-symmetrical configuration, so that the cir-
cumference is deformed similar to a sinuous line.
Therefore the deformation field of the brake disc
here is represented as an annular Kirchhoff plate.

Note that the description of the annular plate is lim-
ited to be linear in this initial implementation, so that
plate buckling phenomena are not covered, see [17],
[18, Ch. 1]. An extended formulation to consider ther-
mal buckling is a field of active research at the DLR.

3.1 Thermo-elastic Coupling

In [14, Sec. 2.2] the material constitution based on
a thermodynamical potential is harnessed to formu-
late the interrelation of the thermal and the mechanical

field. This approach is not suited here, since the influ-
ence of a 3-dimensional thermal on a 2-dimensional
displacement field is to describe.

Instead the so-called body-force analogy is em-
ployed, i.e. the thermoelastic problem is transfered
into an isothermal problem with equivalent distributed
body forces �ϑ [9, §3.3], whose non-zeros compo-
nents in radial and tangential direction read:

�ϑr = �ϑφ =−
1+ν

1−ν2 Eα ϑ , (13)

where α denotes the thermal expansion coefficient, E
Young’s modulus and ν the Poisson number. Together
with the relevant strain components in radial and tan-
gential direction εr and εφ expressed as functions of
the transversal plate deformation w

εr =−z w,rr , εφ =−z
(w,r

r
+

w,φφ

r2

)
, (14)

the associated virtual work δWϑ reads:

δWϑ =
∫
V

δ"T�ϑ dV =

= Eα
1+ν

1−ν2

∫
V

δ

(
w,rr

w,r
r +

w,φφ

r2

)T( z ϑ

z ϑ

)
dV

(15)

3.2 Weak Field Equations

The structural displacements u are evaluated on the
basis of the principle of virtual displacements [10,
(4.7)], which states that the virtual work of the internal
forces equals the virtual work of the external forces:∫

V

δ"T� dV +
∫
V

δ"T�ϑ dV = ∑
i

δuTfi , (16)

where " denotes the strain and � the stress field. fi

represent the applied external forces.

3.3 Modal Approach

Again a Ritz approximation is used to discretize the
deformation field u:

u(c, t) =ΦΦΦu(c)zu(t) (17)

The spatial shape functions in (17) are formulated
as function of cylindrical coordinates, i.e. ΦΦΦu =



ΦΦΦu(r,φ,z), w,r and w,φ are partial derivatives with re-
spect to r or φ:

n

∑
i=1

ΦΦΦuizui =

⎡⎢⎣ −z(cos(φ)w,r− sin(φ)
r w,φ)

−z(sin(φ)w,r +
cos(φ)

r w,φ)
w

⎤⎥⎦ ,
w =

lm

∑
l=0

km

∑
k=0

Rl(r) ⋅ cos(kφ) ⋅ zui(t)+ . . .

. . .+
lm

∑
l=0

km

∑
k=1

Rl(r) ⋅ sin(kφ) ⋅ zui(t) ,

with i = 1,2, . . . ,n , n = (lm +1)(2km +1) .

(18)

The trial functions in (18) correspond to the trial
functions in (5) except of the fact, that a 2-dimensional
field is discretized here, while the temperatures depend
on all three coordinates.

3.4 Discretized Field Equations

If (18) is inserted into (16) the linear field equation for
the displacements is yielded:

Kuuzu +Kuϑzϑ = ∑
i

ΦΦΦ
T
uifi . (19)

The stiffness matrix Kuu in (19) is defined using the
linear displacement-strain operator ∇u, the abbrevia-
tionBu := ∇uΦΦΦu and the elasticity tensorH:

Kuu :=
∫

V
BT

uHBu dV (20)

The thermo-elastic coupling matrix follows from (15):

Kuϑ := Eα
1+ν

1−ν2 . . .

. . .
∫
V

(ΦΦΦu,rr +
ΦΦΦu,r

r
+

ΦΦΦu,φφ

r2 ) z ΦΦΦϑ dV
(21)

In addition to the deformations, the motion of the
disc’s reference frame located at the center of grav-
ity is considered by the Newton-Euler equations [19,
(8.6),(8.21)]:

m ⋅a= ∑fi ,

I!̇+!×I! = ∑ci×fi +∑pi .
(22)

a denotes the translational acceleration of the refer-
ence frame, ! its rotational velocity. I symbolizes the
interia tensor, m its mass. fi presents the discrete ex-
ternal forces, pi discrete external torques.

4 User Interface

The user interface in Dymola is shown in Fig. 3: here
the BrakeForce module represents the input force ap-
plied on the brake pads, the PAD module defines the
specific locations of the ALE nodes where the one end
of the springs will be attached to and provide the kine-
matics which are fed into the CONTACT module. The
CONTACT module is the set of springs and dampers
which conects the brake pads with the brake disc.

Figure 3: User interface of the thermo-elastic plate.

Finally the thermalPlate module is the block
which contains the thermo-mechanical description of
the plate which has been derived in the previews sec-
tions and also includes the geometrical parameters to
model the annular plate (in Table 1).

PARAMETERS DESCRIPTION

r i Inner radius [m]
r a Outer radius [m]
th Thickness [m]
xsi[:,2] Specific points on the plate

Table 1: Geometrical parameters of the plate .

The thermalPlate module contains two types of
connectors: the frame of reference and two array
frames which represent specific points distributed over
the bottom and upper surface of the disc in ALE
description. The connectors nodes ALE upper and
nodes ALE bottom are defined by the array xsi. Each
row of xsi defines the radial and angular position of
one point over the parametrized disc surface contained
in the interval [0,1], i.e. if we have xsi[1,:]={0.5,
0.125} the point will be localized in the middle of the
distance between the outer radius and the inner radius
at 45∘ in angular position.



In real applications brake discs are subjected to
very high increments of temperature during braking
which might have a negative impact on the braking
performance. In order to reduce the influence of such
temperature gradients the so called cooling channels
are integrated in the structure allowing the air to flow
through the mid part of the disc, providing a faster dis-
sipation of the heat transferred to the brake disc. The
impact of the cooling channels on the structural dy-
namics has been also taken into account when mod-
eling the thermo-elastic plate in a simplified way. The
idea was to divide the plate thickness in 3 regions (Fig.
4) where the outer regions have a different heat trans-
fer coefficient than the inner region. The calculation
of the heat transfer coefficients is not trivial; therefore
some assumptions had been done.

Figure 4: Cooling channels in a brake disc.

Note that conventional frame connectors from the
Standard Multibody Library are used within the Flex-
ibleBodies Library, so there is no restriction by con-
necting other bodies or elements to the nodes ALE
connectors. The thermalPlate module offers the possi-
bility to select the initial conditions to which the annu-
lar plate is exerted and also the discretization param-
eters that control the modal approach of the annular
plate:

∙ boundaryConditionRI: this parameter specifies
the boundary condition at the inner radius and
provides the options free, supported and clamped.

∙ boundaryConditionRA: this parameter specifies
the boundary condition at the outer radius and
provides the options free, supported and clamped.

∙ radialDiscretization: this is an integer vector
of arbitrary length, in which all nodal diameters
numbers to consider have to be given.

∙ angularlDiscretization: this is an integer vector
of arbitrary length, in which all nodal circles to
consider have to be given.

The model has been implemented in the Standard
FlexibleBody Library as a complementary example to
the already known Beam and ModalBody classes.

5 Simulation Example

The following example is a simplified representation
of a braking system which illustrates an application
of the thermo-elastic plate model. The mechanism
consists of two brake pads and a thermo-elastic plate.
The pads can only perform translations in the direction
of the z-axis whereas the thermo-elastic plate rotates
around the z-axis with a constant angular velocity. The
geometrical, mechanical and thermal properties of the
thermo-elastic plate are listed in Table 2.

PLATE DESCRIPTION VALUE

Inner radius [m] 0.075
Outer radius [m] 0.15
Thickness [m] 0.022
Density [kg/m3] 7850
Thermal conductivity [W/m.K] 47
Specific heat [J/kg.K] 70
Thermal expansion coefficient [1/K] 1.04e-5
Young’s Modulus [Pa] 2.1e11
Poisson’s Ratio 0.29

Table 2: Properties and dimensions of the plate .

During this simulation a force, called normal
force, is acting on both brake pads along the axial di-
rection. According to Figure 5 this force is set to zero
at the beginning and after certain time step (100 s) the
force is increased up to 5 kN. Once this force is ap-
plied, the brake pads will tend to move enforcing the
contact with the surfaces of the disc and thus the in-
crement of the temperature in the disc due to friction.

Figure 5: Sketch of the plate with the ALE nodes and
normal force.

The contact model consists of a system of dis-



crete linear springs and dampers located at 9 specific
nodes on the pads and assembled with its correspond-
ing nodes on the disc. The nodes on the disc are se-
lected according to the ALE formulation (red dots in
Fig. 5) and they are fixed in space so that they do not
rotate with the disc. At these ALE nodes the forces
generated by the springs and dampers are applied to
the disc. Due to the sliding friction, heat is generated
and it is induced into the brake disc.

Figures 6 and 7 contain the displacement in z-
direction and the applied forces of the selected 9 ALE
nodes respectively. It is important to observe how the
deformation is increased as well as the forces at the
ALE nodes as a result of not only the external forces
(e.g. normal force) but also internal forces (e.g. ther-
mal stresses) acting in the brake disc.

Figure 6: Results of the thermalPlate model for the
deformation along z-axis.

Figure 7: Results of the thermalPlate model for the
normal forces acting on the ALE nodes.

As it was explained before the brake disc is rotat-
ing with a constant angular velocity. When the pads
are in contact with the disc the kinetic energy is trans-

formed into heat which results in an increase of the
temperature in the disc. Figure 8 shows clearly the
temperature propagation over the whole brake disc.
The produced ring-shaped zone has a higher temper-
ature than the rest of the disc due to the contact forces
that the disc is exposed to.

Figure 8: Heat propagation of the thermo-elastic plate
with constant angular velocity.

It should be mentioned that these preliminary re-
sults still must be validated; nevertheless the results
can be interpreted in a physical way and are plausible.

The example presented previously is the represen-
tation of a simplified brake disc model, including only
braked disc and brake pads, but it represents the basis
for a complete modeling of a braking mechanism.

Figure 9: Braking mechanism of a train.

The purpose of this project is to integrate the
thermo-elastic model into more complex scenarios,
such as: complete braking system of a train (Figure
9 ) which includes brake disc (thermo-elastic model),



brake pads, rockers, brake pad holders, calipers, hous-
ing, brake piston, etc., in order to analyze the in-
duced vibrations, due to the thermo-mechanical de-
formations, into the complete dynamics of the entire
system.

6 Conclusion

The present study investigates the thermo-mechanical
effects on the dynamics of a simplified braking system
by combining the FEM with the modal approach for
flexible bodies in multibody systems. Validation of the
presented analysis is still a pendent task; however the
results have shown a good agreement with the physical
description of this phenomenon giving a solid basis to
cope with some of the most common braking problems
such as hot spotting.
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