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Abstract

A procedure to build up a dynamical model of the
gearbox with spur involute mesh is being described.
The main attention is paid to the design technology
of the cylindrical bodies elastic contact models. To
track geometry of contact implicit equations of alge-
braic/transcendental or differential-algebraic type are
being used. At the same time dynamical models of
the bodies involved, gearwheels and gearbox housing,
continue to be three-dimensional. Analytical compu-
tational procedures to obtain gradients and Hessians
are constructed for implementing the contact tracking
algorithm for the involute guided cylindrical surfaces.
The known Johnson model is applied for computing
the contact elastic normal force. This force is defined
as an implicit function of the mutual penetration depth
at contact. Regular algorithm to compute the normal
elastic force is built up. This algorithm is proved to
be convergent. A detailed analysis of the virtual setup
dynamic model is carried out.

Keywords: spur gear; involute; Johnson model;
mesh properties; tracking algorithm

1 Introduction

Computer modeling and simulation of dynamics for
gearboxes of different kinds is a wide spread engineer-
ing task. One might highlight here two extreme poles
of approaches for models constructing. Firstly, the fi-
nite element method can be used for building up suffi-
ciently detailed dynamical models. It is clear that the
models created using such an approach consume quite
significant amount of computational resources. Sec-
ondly, on the other pole of models range one might
find simplified models of gearboxes dynamics allow-
ing a very fast models for machines and their units
to develop. Examples of such models are presented,
for instance, in the Modelica Standard Library. In ad-
dition, there exist well developed models taking into
account friction forces during the mesh processes in

gearboxes [1]. One might also find several other inter-
esting examples of the machinery applications includ-
ing gearboxes models on Modelica [2, 3].

It is important to us to consider models incorporat-
ing both the rigid body dynamics sufficiently effective
from the computational viewpoint and more detailed
mesh models with different types of compliant con-
tacts between teeth of gearwheels. The simplest prob-
lem in this way is the spur involute gear model imple-
mentation.

2 Cylindrical symmetry of 3D-bodies
contact

Staying in frame of the spatial multibody dynamics
classes previously developed [4, 5] it is quite natural
to use additional rigid bodyC playing the role of plat-
form, for implementing a relative planar motion of the
bodies, two gearwheels denoted asA andB in our case.
These bodies assumed to have cylindrical shapes and
are able to move in the plane orthogonal to their gen-
eratrix. LetOCxyzbe a coordinate system rigidly con-
nected with the bodyC, and for definiteness letOC be
its center of mass. Assume the generatrix is always
collinear to the axisOCz which can be expressed by
the geometrical conditionkα = kC (α = A,B), where
kα are the axisOαzα unit vectors andkC is the unit
vector of the bodyC axisOCz. To keep bodies’ motion
parallel to the coordinate planeOCxyone has to require
two algebraic conditions for the bodiesA andB mass
centersz-coordinates:zOA = const, zOB = constto be
satisfied. All coordinates are assumed with respect to
(w.r.t.) the frameOCxyz.

Algebraic equations mentioned can be easily imple-
mented in implicit form if one uses, for instance, con-
straints of the joint type [4] to fix the bodiesA andB in
the bodyC. In this case, the bodyC itself can perform
arbitrary spatial motions. We consider its movement
as being convective in compound motions of the bod-
ies A andB w.r.t. certain inertial frame of reference.
Thus it is quite natural to call the bodyC as a gear



housing, and the bodiesA andB are supposed to play
the role of gearwheels.

One might build up mechanical tools for the cylin-
drical bodies contact using 2D-geometry techniques
with aid of the above reduction to the planeOCxy. For
instance, the cylinders contact tracking model might
be written, similarly to [6], in the form of six, alge-
braic or transcendental, equations as follows

gradgA(rPA) = λgradgB(rPB) ,
rPA− rPB = µgradgB(rPB) ,

gA(rPA) = 0, gB(rPB) = 0,
(1)

whererPα = (xPα ,yPα)
T (α = A,B) are the radius vec-

tors for the pointsPA, PB under tracking w.r.t. the hous-
ing coordinate systemOCxy; functionsgα(r) express
equations for the curves bounding planar figures of the
bodiesA andB w.r.t. the axesOCxy; λ, µ are the aux-
iliary scalar variables. Totally the system (1) has six
scalar equations w.r.t. six scalar variablesxPA, yPA, xPB,
yPB, λ, µ.

To complete classes corresponding to models of
contact one has to define contacting curves in the bod-
ies own planar coordinate systemsOαxαyα in the form
fα (xα,yα) = 0. If Tα is an orthogonal2× 2-matrix
defining current orientation of the bodyα planar figure
then obviously the relationsgα(r) = fα

[
TT

α (r − rOα)
]
,

gradgα(r) = Tα gradfα
[
TT

α (r − rOα)
]

ought to take
place.

Similarly, following the paper [7] one might easily
construct a model to track the cylindrical contact by in-
troducing a system of differential-algebraic equations
of the form

ṙPA = uPA, ṙPB = uPB, λ̇ = ξ, µ̇= η, (2)

[ωωωA,gradgA]+TAHessfATT
A (uPA−vPA)−

ξgradgB−
λ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
uPA−uPB−ηgradgB−

µ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
(gradgA,uPA)−

(
gradfA,TT

A vPA

)
= 0,

(gradgB,uPB)−
(
gradfB,TT

B vPB

)
= 0,

(3)
where the vectorsvPA, vPB are relative, w. r. t. the body
C, velocities of the bodies physical points currently lo-
cated at the geometrical pointsPA, PB. One might cal-
culate them according to the Euler formula

vPα = vOα +[ωωωα, rPα − rOα ] (α = A,B),

whereOA, OB are the bodies mass-centers mentioned
above,ωωωA, ωωωB are relative w. r. t. the housing angu-
lar velocities of the bodies, always directed along the

OCz-axis. Note that the pointsOA, OB might be lo-
cated at different levels of theOCz-axis of the gearbox
housing. But nevertheless one should regard the equa-
tions (2), (3) in their planar version as being projected
onto the planeOCxy.

In this case, for complete implementation of the
contact model, we need to compute the gradients
gradfα and HessiansHessfα at opposing pointsPα in
bodies own coordinates.

3 Geometry of the spur involute gear

One has to consider the involute equation in the plane
Oαxαyα of the gearwheel coordinate systemOαxαyαzα
for resolving the problem which has been formulated
above for the case of the spur involute meshing. For
this one has to apply polar coordinatesRα, θα defined
for each bodyα in the following known way:xα =
Rα cosθα, yα = Rα sinθα. For the involute unwinding
counterclockwise an equation for the polar coordinates
can be deduced from the known relations [8] in the
form

√
R2

α− r2
αb

rαb
−arccos

rαb

Rα
−θα = 0, (4)

whererαb is the involute base circle radius. To com-
putegradfα andHessfα one has to use formulae of the
transformation(xα,yα) 7→ (Rα,θα) and apply an auxil-
iary Jacobi matrices arising in the process of analytical
calculations.

The contact tracking algorithm developed requires
equation of a curve in the formf (x,y) = 0 instead of
equation (4). Introducing the notation

p(R,θ) =

√
R2− r2

b

rb
−arccos

rb

R
−θ (5)

one can see easily that

p(R,θ) = f (Rcosθ,Rsinθ). (6)

This equation is a starting point for producing all the
formulae for gradients and Hessians. Indeed by virtue
of (6) we have

gradp = ( fx, fy)
(

xR xθ
yR yθ

)
= gradf

∂(x,y)
∂(R,θ)

(7)

sincegradp = (pR, pθ). Therefore

gradf = gradp

[
∂(x,y)
∂(R,θ)

]−1

. (8)



One can see from (5) that

gradp =




√
R2− r2

b

rbR
,−1


 , (9)

and from the polar coordinates definition the relation

∂(x,y)
∂(R,θ)

=
(

cosθ −Rsinθ
sinθ Rcosθ

)
.

follows. Hence,

[
∂(x,y)
∂(R,θ)

]−1

=

(
cosθ sinθ

−sinθ
R

cosθ
R

)
. (10)

To complete the computation ofgradf as a function of
x, y one can remark that

R=
√

x2 +y2, cosθ =
x

R(x,y)
, sinθ =

y
R(x,y)

.

(11)
From (7) for the Hessian computation note that

Hessp =
(

∂(x,y)
∂(R,θ)

)T

Hessf
∂(x,y)
∂(R,θ)

+

fxHessx+ fyHessy,
(12)

where the following notation has been used

Hessp =
(

pRR pRθ
pθR pθθ

)
=




rb

R2
√

R2− r2
b

0

0 0


 ,

Hessx =
(

xRR xRθ
xθR xθθ

)
=

(
0 −sinθ

−sinθ −Rcosθ

)
,

Hessy =
(

yRR yRθ
yθR yθθ

)
=

(
0 cosθ

cosθ −Rsinθ

)
,

Now one can obtain from equation (12) a formula
for the Hessian we sought

Hessf =

[(
∂(x,y)
∂(R,θ)

)T
]−1

×

(Hessp− fxHessx− fyHessy)
(

∂(x,y)
∂(R,θ)

)−1

.

All the objects included here on the right hand side
have explicit expressions in polar coordinates. It is ev-
ident, these expressions can be resolved w. r. t. coor-
dinatesx, y with aid of transformation (11).

4 Contact force model

The geometrical properties have been implemented as
a class parameter for the base template described in [5]
for the model outlined above with contact of involutes.
Along with the geometrical properties model, the con-
tact elastic normal force model plays a key role as well.
According to the results of [9] the Johnson contact
model [10] seems to be the most acceptable one for
the case of the cylindrical bodies contact. The model
can be expressed as an equation written for the case of
so-called external contact

h =
N

πE?

[
ln

4πE? (ρA +ρB)
N

−1

]
, (13)

representing an implicit functionN(h) for the specific
normal elastic force, per unit of length along the cylin-
der generatrix, depending on the depthh of mutual ap-
proach (penetration). Here in equation (13)E? is the
composite modulus of elasticity for the contact. It sat-
isfies the equation

1
E?

=
1−ν2

A

EA
+

1−ν2
B

EB
,

whereEA, EB are Young’s moduli of bodies’ material,
νA, νB are Poisson ratios. ValuesρA, ρB are radii of
curvature for involutes in the mesh each computed at
current positions of the pointsPA, PB respectively.

Remark 1 Staying in frame of the Hertz model con-
ditions, we assume the contact area dimensions small
as compared with the sizes of contacting bodies. Thus,
the cylindrical involute surfaces in vicinities of points
PA, PB are approximated by the circular cylinders
with an accuracy of order higher than two. Appli-
cation of equation (13) means that we virtually re-
place the cylindrical surfaces with involutes as guides
by the circular cylinders with the same radii of cur-
vature at any current instant of simulation time. Evi-
dently these cylindrical surfaces, involutive and circu-
lar ones, have mutual tangency of the second order.

Computational implementation of formula (13) in-
version reduces to an equation w.r.t. dimensionless
variablesx, y defined in the following way:

x =
e

4(ρA +ρB)
h, y =

e
4πE? (ρA +ρB)

N.

Then (13) becomes equivalent to the equation

y· lny =−x (14)

defining the implicit functiony(x).



To resolve equation (14) correctly in vicinity of its
evident solutionx = 0, y = 0 one has to find a seg-
ment of monotonicity of the left hand side of (14). The
zero solution corresponds to the case of beginning of
the contacting process. In this case, a contact patch,
generically rectangular area, degenerates into the 1D-
line segment along the cylindrical surfaces generatrix.
It is easy to see that the segment sought is

[
0,e−1

]
.

Within this segment the left hand side function of (14)
decreases monotonically from zero to−e−1. Thus
one can define an area of applicability of the Johnson
model by the following inequalities

h≤ 4(ρA +ρB)
e2 , N≤ 4πE? (ρA +ρB)

e2 . (15)

From the involute properties and using Figure 1 the
relation ρA + ρB = |KAKB| is satisfied to within the
(small enough) valueh. For this reason, if the material
stiffness is sufficiently large then the depthh is small
enough, and then the left condition of (15) is always
satisfied. Here, the pointsKA, KB are the points of a
tangency between the line of action and base circles of
gearwheels.

For real materials even the conditionh¿ |KAKB|
is satisfied. Then for Young’s moduli large enough
the Johnson model is surely valid on the segment
y∈ [

0,e−1
]

of monotonicity for the left side of equa-
tion (14). Since the derivative for the left side of equa-
tion (14) at y = e−1 is equal to zero then we may
furthermore restrict ourselves by set of strict mono-
tonicity corresponding to the condition0≤ x < e−1,
or equivalently to0≤ y < e−1.

Moreover, equation (14) has a singularity at zero.
Therefore, we shall construct an algorithm for com-
puting the functiony(x) taking into account that0 <
x < e−1. To proceed with the algorithm replace an un-
known functiony(x) in equation (14) by the function
η(x) according to the formulay(x) = xη(x). Then a
new equation has the form

η(lnx+ lnη)+1 = 0. (16)

Let us introduce here a new known independent
variableµ instead of the old onex according to the
equation

ν =− 1
lnx

.

The valueν is small and positive if the valuex is small
and positive. Then equation (16) is transformed to the
form

η = ν(1+η lnη) (17)

more suitable for investigating and computing the so-
lution for the given value ofν.

To overcome the problem we need in an algorithm
with the behavior regular enough in vicinity of zero.
It turned out equation (17) delivers also an iteration
process in the explicit form

ηn+1 = ν(1+ηn lnηn) , n = 0,1, . . . (18)

One might set any valueη0 satisfying the condition
0< η0≤ e−1 as a guess value of iteration process (18).
It is easy to see the numeric sequence{ηn}∞

n=0 built
up using process (18) is strictly positive and bounded:
0 < ηn < ν. Therefore, this sequence has at least one
limit point η?. It is equivalent to an existence of the
subsequence{ηnk}∞

k=0 converging to this limitηnk −→
η? ask−→ ∞.

This limit is unique. Indeed, by virtue of (18) the
limit satisfies equation (17). If there would be another
different limit η?? then equation (17) should have at
least two different solutions on the set[0,1). Then as
a consequence equation (14) should have two different
solutions on the set[0,e−1) what is impossible because
it has exactly one solution on this set.

Computations show that iteration process (18) con-
verges fast enough. Merit of the process is that it
works equally well for all admissible values ofx. If
x becomes close to zero then the valueν > 0 is also
small. Besides, for any arbitrarily smallη > 0 the
functionη lnη always stays uniformly bounded. Thus
the iteration operator conserves its regularity for any
admissiblex.

Other class parameters of the contact model tem-
plate in our case are following: (a) normal viscous
term was selected similar to the implementation de-
scribed in [7]; (b) tangent friction force model for defi-
niteness and simplicity, similar, for example, to the pa-
per [11], was selected as a regularized Coulomb fric-
tion law having a shape of the piecewise linear func-
tion of relative velocity at contact [6]. There are no
difficulties for changing the corresponding class pa-
rameter and for applying any different model, more
complicated than ones mentioned above.

5 Algorithm of teeth pairs switching

To describe the algorithm we assume gearwheels in
rotational motion each such that the pinion, wheelA,
rotates clockwise, and the gear (B) does it counter-
clockwise. We consider a process of initial data gener-
ation later. When boosting the pinion tooth in generic
case starts to penetrate the corresponding gear tooth



Figure 1: The mesh scheme

because of the compliance at contact. Suppose for
simplicity this penetration continues during the mo-
tion without any backlash. The backlash possibility
requires additional complications of the model.

Remind the pointsPA andPB of involutes are oppos-
ing each other at contact. Then using known properties
of an involute one can prove the following

Assertion 1 The pointsPA and PB always lie on the
line of actionKAKB, see Figure 1.

Generally, due to the compliance of contact the
point PB will be located on the lineKAKB to left from
the pointPA and above it, see Figure 1. Thus while the
pinion rotates by a pitch angle∆γA, and the pointPA

reaches the positionb (starting from its initial position
a of the mesh cycle), contact itself does not really van-
ish. This may happen only after the pointPB had also
passed the positionb.

On time interval, while the geometrical pointb had
been passed initially by the pointPA and then byPB,
contact model has to be more complicated than the
Johnson one being applied here. This model strongly
depends on the tooth tip relief had been implemented
in the gearbox. The tip may be assumed sharp, as a
point of the involute and addendum circle intersection,
or curved with smoothed edges. For instance, it may
have circular profile of the radius small enough be-
tween the involute and the addendum circle.

Exactly at the instance of the pointPA passing
through the positionb, the similar pointPA of the next
teeth pair, denote it by primeP′A, passes through the
position a. Really to this time, contact between the

next teeth pair may already be existed. But require-
ments of the Johnson model will be implemented only
after the pointP′B of the next pair contact will pass
through the positiona.

Thus in case of the compliant contact one cannot
avoid a presence of two simultaneous contacts: (a)
“decreasing” contact in vicinity of the positionb ex-
isting at this position after the pointPA had passed
throughb; (b) “increasing” contact in vicinity of the
position a arising ata before the pointP′B will pass
through it. Remind that all these stages of transition
arise simultaneously.

In our simplified approximate contact model we
assume that exactly at the moment when the point
PA passes through the positionb the Johnson contact
model instantly switches from the pointb of the cur-
rent teeth pair to the pointa of the next one. Exactly at
this moment the pointP′A passes the positiona. Denote
this time instant ast?.

First of all one should set that

rPA (t?) = ra.

To define the vectorrPB (t?) it is sufficient to find
a distance between pointsP′A andP′B of the new teeth
pair. It is not difficult to check that this distance is
equal exactly to the one between pointsPA andPB at
the same instant. Note that simultaneously pointsP′A
andP′B should lie on the lineKAKB, first P′A thenP′B if
counting fromKA to KB. Thus one can also set that

rPB (t?) = rPA (t?)+ rPB (t?−)− rPA (t?−) .

To obtain starting valuesλ(t?), µ(t?) for the next
mesh cycle one has to compute norms of gradients



|gradgA|, |gradgB| (co)vectors and then use the first
and the second equations of the system (1). Gradients
are to be computed at pointsP′A andP′B respectively.
Since we always suppose that gradients are directed
“outside” the bodies at contact, we have to assume that

λ(t?) < 0, µ(t?) < 0.

Furthermore, since functionsgA, gB are derived from
the functionsfA, fB by translatory and rotary motions
of the three dimensional spaceR3 then the following
condition is satisfied

|gradgα|= |gradfα| (α = A,B).

To compute the value|gradfα| let us apply equa-
tions (8), (9), (10) from above in the following way

gradfα =




√
R2

α− r2
αb

rαbRα
,−1







cosθα sinθα

−sinθα

Rα

cosθα

Rα




=




√
R2

α− r2
αb

rαbRα
,− 1

Rα




(
cosθα sinθα
−sinθα cosθα

)
,

whereRα, θα are the polar coordinates in the bodyα
coordinate systemOαxαyα. One can see easily from
last equation that the (co)vectorgradfα is a result of
the (co)vector




√
R2

α− r2
αb

rαbRα
,− 1

Rα




rotation by the angleθα. Then one can write down the
norm sought as

|gradgα|= |gradfα|= 1
rαb

(α = A,B).

Thus the gradient (co)vector of the function defin-
ing the involute has a constant norm inversely propor-
tional to the base circle radius. Now from the first and
the second equations of the system (1) we have respec-
tively

λ(t?) = −|gradgA|
|gradgB| =− rBb

rAb
,

µ(t?) = −|rPB (t?−)− rPA (t?−)|
|gradgB| =

−rBb|rPB (t?−)− rPA (t?−)| .

And useful in all aspects result was obtained by the
way:

Assertion 2 In case of involutes the equation

λ =− rBb

rAb

represents an integral of motion for the contact track-
ing system of DAEs (2), (3).

Indeed, one can see from above that the variableλ
keeps its initial value all time of simulation

λ(t)≡ λ(t0) = λ(t?) =− rBb

rAb
.

This property may be very useful to control an accu-
racy of computations during the simulation process.

6 Some details of implementation

As it was already mentioned the template

ContactConstraintBaseTemplate

developed earlier [5] has been applied for implement-
ing the contact model of two gearwheels with spur in-
volute gearing. The template has four class parameters
defining models of: (a) the normal elastic force, (b)
the normal force of viscous resistance, (c) the tangent
force of resistance for relative slipping at contact, (d)
geometry of surfaces in vicinity of contact, in our case
they are the cylinders guided by an involute.

As it was already noted we guess approximately that
a contact patch is the rectangular strip, in general thin
enough. The normal elastic force is assumed to be uni-
formly distributed in one dimension along the genera-
trix of cylinder over the patch.

Let us consider in more details an implementation
of the class parameter responsible for geometry prop-
erties of the contact. This class is implemented as a
four-level hierarchy of inheritance for the properties
and behavior:

CylindricCompliantConstraint
↓

CylindricCompliantConstraintAddOn
↓

CylindricSurfacesOfConstraintDifferential
↓

InvoluteAndInvoluteDifferential

A differential-algebraic equations are applied here for
implementing the contact tracking algorithm.

A base class for all geometry classes implement-
ing cylindrical contact is the modelCylindric-

CompliantConstraint . This class is responsible
for computation of geometric and kinematic proper-
ties of the pointsPA andPB under tracking w. r. t. the
third bodyC, the gearbox housing. These properties
are described in particular by the following variables:



• rAr , rBr are the pointsPA andPB relative posi-
tions;

• gradgAr , gradgBr are the cylindrical surfaces
gradient vectors computed at pointsPA, PB re-
spectively in the frame of coordinatesOCxyz;

• normAr is the unit vector normal to an outer sur-
face of the bodyA computed at the pointPA w. r. t.
the coordinate systemOCxyz;

• vrAr , vrBr are relative velocities of bodies’A, B
points currently occupying the geometric points
PA, PB locations;

Modelica code of the current class under descrip-
tion, its section of equations, reads

equation
rA = InPortC.r + InPortC.T*rAr;
rB = InPortC.r + InPortC.T*rBr;
gradgA = InPortA.T*gradfA;
gradgB = InPortB.T*gradfB;
normA = gradgA/ sqrt (gradgA*gradgA);
gradgAr = ( transpose (InPortC.T)*

InPortA.T)*gradfA;
gradgBr = ( transpose (InPortC.T)*

InPortB.T)*gradfB;
normAr =

gradgAr/ sqrt (gradgAr*gradgAr);
vrA = InPortA.v + cross (InPortA.omega,

rA - InPortA.r);
vrB = InPortB.v + cross (InPortB.omega,

rB - InPortB.r);
vrAe = InPortC.v +

cross (InPortC.omega,
rA - InPortC.r);

vrBe = InPortC.v +
cross (InPortC.omega,

rB - InPortC.r);
vrAr = transpose (InPortC.T)*

(vrA - vrAe);
vrBr = transpose (InPortC.T)*

(vrB - vrBe);
end CylindricCompliantConstraint;

In the derived classCylindricCompliantCon-

straintAddOn :

• PA, PB are variables for coordinates of the points
where a resultant contact forces are applied, in
directions of bodiesA andB respectively;

• relvnr is the normal component, in case ofPA

= PB, of the velocity for the pointPAof the body
A relative to the bodyB;

• relvtr is the tangent component of the the body
A relative velocity atPA = PBw. r. t. the coordi-
nate systemOCxyz;

• kappa is the contact indicator which is: (a) equal
to zero for the case of the surfaces touching each
other by segment of strait line, (b) positive and
equals to the distance between the surfaces for the
case of contact absence, (c) negative and charac-
terizes depth of mutual penetration for the case of
contact, contact patch has a rectangular shape;

• kappaA , kappaB are the parameters defining
elastic properties of bodiesA andB respectively.

Section of equations/behavior for this model has the
following code

equation
kappa = sqrt (gradgBr*gradgBr)*mu;
if noEvent (kappa <= 0) then

PA = kappaA*rB + kappaB*rA;
PB = PA;

else
PA = rA;
PB = rB;

end if ;
vPA = transpose (InPortC.T)*

(InPortA.v + cross (InPortA.omega,
PA - InPortA.r));

vPB = transpose (InPortC.T)*
(InPortB.v + cross (InPortB.omega,

PB - InPortB.r));
relv = vPA - vPB;
relvnr = relv*normAr;
relvn = InPortC.T*relv*normAr;
vPAn = vPA*normAr;
vPBn = vPB*normAr;
vPAt = vPA - vPAn*normAr;
vPBt = vPB - vPBn*normAr;
relvtr = vPAt - vPBt;
relvt = InPortC.T*(vPAt - vPBt);
relvtsqrt = sqrt (relvt*relvt);
OutPortA.F = Forcet +

Forcen*normA + Forcev*normA;
OutPortA.P = PA;
OutPortB.P = PB;

end CylindricCompliantConstraintAddOn;

The next derived classCylindricSurfacesOf-

ConstraintDifferential implements the DAE
system (2), (3). Its Modelica code is similar to one of
the classSurfacesOfConstraintDifferential

described in [7] for the generic case of the Hertz-point
model. The difference concerns an account of the
cylindrical symmetry for the current case.

Finally, the contact surfaces, rather curves bounding
planar figures of bodies, specifications are defined in
the last class of the inheritance chainInvoluteAnd-

InvoluteDifferential . This model implements
an algorithm described in Section 3 for computing of



gradients and Hessians in bodies’ coordinates systems.
As one can see from Section 3 corresponding Model-
ica code has to be bulky enough.

It is clear that when working two teeth of gear-
wheelsA and B cannot stay in the meshing process
during long time. One can see in Figure 1 that in case
of the pinion rotation clockwise the contact point (seg-
ment of line), or rather contact patch small enough,
moves from the pointa to the pointb of the line of
actionKAKB. At the very moment of contact loss for
the current pair of teeth at the pointb the next pair ar-
rives at contact, the pointa, and new “point” of contact
starts its motion along the meshing strait line of action.

One has to note here that for simplicity we consider
a mesh process without overlapping of time intervals
for the teeth pairs contacting. If they are overlapped
then one should create at least two contact objects
“connecting” the objects of bodiesA andB. These ob-
jects are to be activated/deactivated alternatively when
arriving at/departing from the pointa/b.

While the contact patch moves from its positiona
to the positionb each of gearwheelsA, B rotates by
the pitch angle∆γA, ∆γB respectively. The last class of
the inheritance line considered above besides the com-
putation of gradients and Hessians implements also a
switching process for the pairs of gearwheels thus syn-
chronizing this switching with the corresponding an-
gles of rotation for the bodiesA andB.

This mechanism for discontinuous jumps of the
contact points is implemented by the Modelica event
handling facility. Code of the classInvoluteAnd-
InvoluteDifferential fragment concerning re-
quired switching reads

...
der (phirel_A) = Active*omegarel_A[3];
der (phirel_B) = Active*omegarel_B[3];
Deltar = rBr - rAr;
when abs (phirel_A) > gamma_A +

gamma_Astep then
reinit (gamma_B, abs (phirel_B));
reinit (rAr[1], rA0[1]);
reinit (rAr[2], rA0[2]);
reinit (rBr[1], rA0[1] + Deltar[1]);
reinit (rBr[2], rB0[2] + Deltar[2]);
reinit (lambda, lambda0);
reinit (gamma_A, gamma_A +

gamma_Astep);
end when ;

...

Here the variablesphirel_A , phirel_B are to ac-
cumulate an angles of rotation for the bodiesA, B
w. r. t. the housingC. They are the model state

variables having derivatives defined asz-components
of the wheels relative angular velocities vectors
omegarel_A andomegarel_B .

In the code fragment above, variablesrA0 , rB0 , in
addition to ones already described, correspond to the
pointsPA, PB initial position, at the pointa in Figure 1,
vectors in the contact tracking algorithm. Relative,
w. r. t. PA, position of the pointPB for the new teeth
pair being directed, as we know, along the line of ac-
tion KAKB, has to be equal, because of rigidity, to the
similar position for the previous pair losing contact at
the event. This relative position is tracked by the vari-
ableDelta .

The variablesmu, lambda correspond to the vari-
ablesµ, λ in equations (2), (3);lambda0 correspond
to the λ initial value at the positiona; gamma_A,
gamma_Bare the variables for the gearwheels angles
of rotation changing by the pitch values∆γA, ∆γB be-
ing stored in variablesgamma_Astep , gamma_Bstep .
Note that for correct handling of the switching pro-
cess it is sufficient to track only the pinion, body
A, angle of rotation and use only the variablesgam-

ma_A, gamma_Astep , phirel_A , omegarel_A . Ini-
tial depth of penetration, just after the contact switch,
for the new pair is defined by the variablemu remains
the same as for the previous pair of teeth in contact.
This is because the gradient, from the right hand side
of the second equation in system (1), norm stays con-
stant in case of the involute. This constant is equal to
the value1/rBb. For definiteness the wheelA supposed
to rotate monotonically clockwise.

7 Computational experiments

To perform a computational testing program for the
gearbox model one builds up a virtual setup consisting
of two gearwheels: the pinionA and the driven gearB.
For simplicity one assumes the gearbox housingC be
fixed w. r. t. inertial frame of reference, and the ori-
gin OC of its coordinate systemOCxyzcoincides with
the pinion geometrical centerOA. Cylindrical revolute
joint connecting the bodiesA andC is also located at
the pointOC. The gearwheelB centerOB is located
on the horizontal axisOCx. Here, atOB, a cylindrical
revolute joint connecting the bodyB and the auxiliary
sliderS is located. The sliderS is in turn able to slip
freely w. r. t. the bodyC along the axisOCx, though
this sliding performs with a resistance of the spring of
high stiffness with the damper. This spring connects
bodiesC andSbetween one another.

We introduced in the current experimental setup un-



Figure 2: The Virtual Setup Visual Model

der description a compliance between the bodiesB and
C. This compliance is implemented by the auxiliary
slider mentioned and is directed along the lineOAOB

connecting the wheels centers and lying on the axis
OCx. Such a construct prevents the static indefinite-
ness in the model for the case of rigid contact at the
mesh point of gearwheelsA andB. A visual model of
the setup is shown in Figure 2.

7.1 Parameters of the model

The following independent parameters are defined in
the mesh model:

• zA = 20 is number of teeth for the pinion;

• zA = 30 is number of teeth for the driven gear-
wheel;

• rA = 0.2m is the pinion pitch circle radius.

After that the remaining geometry parameters of the
mesh are computed as follows:

• n = zB/zA is the transmission ratio;

• rB = nrA is the pitch circle radius of the driven
gearwheel;

• ∆γA = 2π/zA, ∆γB = 2π/zB are the gearwheels an-
gular pitches;

To define the mesh further it is essential to set the
pressure angleαw value. It can be chosen using the
condition

αw > αwinf ,

whereαwinf = inf αw is the lower bound for all the
pressure angles permissible by the parameters above.
Its value is defined by the formula

αwinf = arctan
2π

zA(1+n)
.

For definiteness we will use the following value

αw = 1.05αwinf .

Furthermore, using the pressure angle and transmis-
sion ratio one cam compute sequentially all geomet-
rical parameters needed which are shown in Figure 1.
First the base circles radii can be found as

rαb = rα cosαw (α = A,B).

Then one can compute a full length of the line of action
as follows

|−−−→KAKB|= rA(1+n)sinαw.

At the same time a length of any segment[a,b]
along this line is exactly the length of arc for any of
the base circles corresponding to the pitch angle∆γA

or ∆γB

|−→ab|= rα∆γα (α = A,B).

Initial distance between the gearwheels centers is
equal to the valueL = rA+ rB. To compute initial con-
ditions for the contact tracking system of DAEs (2), (3)
we need in additional computations. From the descrip-
tion above we have for absolute initial coordinates of
the pointsOC andOA

rOC = rOA = (0,0,0)T .



Thus an initial position of the gear center is defined by
the equation

rOB = (L,0,0)T .

Initial positions of the pointsKA andKB can be com-
puted easily, see Figure 1, with use of the following
vector formulae

rKA = rOA + rAb(cosαw,sinαw,0)T ,

rKB = rOB− rBb(cosαw,sinαw,0)T .

After that the line of action directing vector can be ob-
tained as

−−−→
KAKB = rKB− rKA. And now one can define

a position of the pointa, where the contact process be-
gins, in the form

ra = rKA +
1
2

(
|−−−→KAKB|− |−→ab|

) −−−→
KAKB

|−−−→KAKB|
,

and also an initial position of the pointb, where the
contact losses, has the representation

rb = ra +
|−→ab|
|−−−→KAKB|

−−−→
KAKB.

After the endpointsa, b of an active segment of the
line of action have been defined it is time to compute
the addendum radiusrBa of the gear as a distance be-
tween the pointa and the initial position ofOB, see
Figure 1. The addendum radiusrAa of the pinion is in
turn a distance between an initial position of the point
b andOA. These radii are defined by the equations

rAa = |rb− rOA| , rBa = |ra− rOB| .

To compute initial angles of rotation for the pinion
and gear we assume that at an initial instant of simu-
lation teeth of an initial pair are touching each other
geometrically without any pressure, and, as a result,
mutual penetration is absent. An initial angular veloc-
ities of the gearwheels assumed equal to zero. For defi-
niteness we also assume that the axisOAxA of the body
A crosses the base circle exactly at a root point of the
involute. This involute defines a surface of the tooth
contacting with its mate exactly at the pointa. Sim-
ilarly, the bodyB axis OBxB passes through the root
point of the contact involute of the bodyB at initial
instant.

One can compute the polar angles of each the invo-
lute mentioned above using the equations (4) with the
following equations (α = A,B)

θα =

√
|ra− rOα |2− r2

αb

rαb
−arccos

rαb

|ra− rOα |
,

Thus we can define an initial values for the angles
of rotation of bodiesA andB in the form

ϕα (t0) = argζα−θα (α = A,B),

where complex numbersζA, ζB are defined via the vec-
torsra− rOα components as

ζα = (xa−xOα)+ i (ya−yOα) (α = A,B).

Note that the functionargof complex argument has a
computer implementation as a standard library func-
tion atan2 .

Initial quaternions of bodiesA andB orientation are
defined using known formulae

qα (t0) =
(

cos
ϕα (t0)

2
,0,0,sin

ϕα (t0)
2

)T

(α = A,B).

State variables of the DAE system (2), (3) tracking
contact are to satisfy the following initial conditions

rPA (t0) = rPB (t0) = ra, µ(t0) = 0, λ(t0) =− rBb

rAb
.

Note here that in case of the involute the state vari-
ableλ(t) turned out to be constant value

λ(t)≡ const= λ(t0) .

Thus this equation represents exactly integral of mo-
tion, and it can be used effectively to control an accu-
racy of computations.

Finally, in the example under consideration the con-
stant driving torqueMA = (0,0,−1N ·m)T assumed
being applied to the pinionA while the viscous torque
of resistanceMB = (0,0,−10ϕ̇B)T is applied to the
gearB. Gearwheels themselves assumed made of steel
with Young’s modulusEA = EB = 2·1011Pa and Pois-
son ratioνA = νB = 0.3, and have the same width,
along the axis of rotation, of0.1m.

7.2 Dynamic transmission error

A value of the dynamic transmission error (DTE) has
been chosen for the computational verification. If
force of friction exists at contact then DTE is not con-
stant. First of all let us introduce the auxiliary variable

∆ =−rAbϕA− rBbϕB. (19)

This value characterizes a mismatch for the base cir-
cles arc lengths. If teeth in pairs contacting have
an ideal “rigid” unilateral constraints without compli-
ance, and switching between teeth pairs is also ideal
then the value of∆ has to be an identical zero.



Figure 3: Comparison of the discrepancy (Delta) and the depth of penetration (Depth)

To undertake an analysis more detailed let us con-
sider the results of numeric experiments. Firstly, one
can remark that in case of the involute mesh a dis-
crepancy∆(t) from (19) has to be identical with the
depth of mutual penetration of rigid teeth in vicinity
of contact point. Indeed, the discrepancy (19) is ex-
actly the difference between the arc distances of base
circles while each of the wheelsA andB rotates. This
difference is accumulated from the very initial instant
of simulation.

On the other hand it is known that the segmentPAPB

is a perpendicular common to the teeth involutes pen-
etrating each other, and simultaneouslyPAPB lies ex-
actly on the lineKAKB and its length is exactly the
depth of teeth mutual penetration. Then there exists
the only geometric possibility: the condition

|−−→PAPB| ≡ κ(t)≡ ∆(t)

has to be satisfied. The functions∆(t), κ(t) derived
independently in the model are compared in Figure 3.

An effect obtained in an angular displacements due
to pressing and subsequent penetrating in the John-
son contact model is certainly like one derived due to
torsional deformations of elastic gearwheels [12, 13].
Moreover, finite element modeling do not disturb in
any essential degree the whole dynamical picture if
used to simulate teeth bending when contacting [14].

Indeed, one can compute the DTE according to the
formula

δ =−rAbψA− rBbψB (20)

similar to (19). Here the valuesψA, ψB are the angular
displacements of the pinion and gear from their mean
nominal positionsΦA(t), ΦB(t) such that the following
equations fulfill

ϕα(t) = Φα(t)+ψα(t) (α = A,B).

These nominal valuesΦα(t) correspond just to the
case of rigid contact satisfying evidently the following



kinematic identity

−rAbΦA(t)− rBbΦB(t)≡ 0.

Hence, it turns out in frame of our considerations that
the identity

∆(t)≡ δ(t)

takes place.
Let us investigate now sources of the DTE presented

in Figure 3. If one eliminates completely in the model
the friction between teeth surfaces then the valueδ(t)
will grow asymptotically to its limit value thus provid-
ing a systematic error of transmission, see Figure 4,
blue curve. The reason for this error is evidently a
mutual penetration of the compliant contact model of
Johnson.

Figure 4: The DTE without (blue) and with (red) fric-
tion

If one introduces to the whole gearbox model, the
simplest model of the Coulomb friction with the coef-
ficient f = 0.3 then the systematic error will be super-
imposed by the periodic one, see Figure 4, red curve.
This latter error has discontinuities at instants of the
contact teeth pair changes and at the instant when the
contact patch passes through the pitch pointP, see Fig-
ure 1. The periodic DTE almost completely coincides
with similar curves presented in papers [12, 13]. In the
graphs of these papers one can note only small varia-
tions from exact curves of our Figures 3,4. An origin
of these variations is evidently additional small devi-
ation derived due to more exact account of the elastic
torsion oscillations considered in [12, 13]. Additional
splash of weak torsional oscillations one can observe
in [12, 13] exists because of the multiplicity of teeth
contacts in that model: time segments overlap for the
mesh cycles of the nearby pairs. So when contact of
the previous teeth pair vanishes then additional elas-
tic disturbance arises. Remind that for simplicity we

Table 1: Comparative efficiency

Type of the Coefficient CPU
contact model of friction time

Johnson’s 0.3 20.4
Johnson’s 0 16.1

rigid 0.3 13
rigid 0 11.4

consider in our model the case of mesh ratio which is
equal to one.

7.3 Comparison with a rigid contact

A goal of our further numerical experiments is to com-
pare two contact models when meshing: (a) the John-
son model, (b) the rigid contact model without com-
pliance. The results of models under comparison sim-
ulation run showed for illustration in Figure 5. The
normal contact force is counted along they-axis of the
plot. Case of the Johnson model corresponds to the
blue curve while the red one is for the case of rigid
contact model.

Comparison of the simulation results shows in Fig-
ure 5 that both contact models, the Johnson one and the
rigid contact, bring the same dynamic result. The only
difference is that the Johnson model generates addi-
tional oscillations of the normal contact force being su-
perimposed on the normal force behavior for the rigid
case. Moreover, one can see from detailing shown in
Figure 5 that rigid contact model looks like a result of
the procedure of averaging for the dynamics with the
compliant contact, Johnson, model.

An advantage of the latter case is that this case of
the contact model makes it possible to apply an arbi-
trary number of contacts for the body in the multibody
system dynamics model without any restrictions. At
the same time the rigid contact model does not allow
such a possibility.

On the other hand, any contact model based on the
FEM code application requires much more computa-
tional resources than in case of the “simple” compli-
ant model analysed above. To compare an effective-
ness of the Johnson contact model and the model using
the rigid unilateral contact constraint consider Table 1
with preliminary relative estimations of the CPU time,
in seconds, needed for both cases with addition of the
friction force influence. Here the results of the simu-
lation run are presented, without any optimization, for
the model time of 5 seconds.



Figure 5: Comparison of the models with (blue) and without (red) compliance at contact

One can note easily from Table 1 that the Johnson
model increases computational time in some degree,
not larger than twice, in compare with the fastest case
of the rigid contact. And simultaneously this model
with compliance increases considerably the flexibility
and universality of simulation tools in a wide range of
applied problems.

8 Conclusions

Comparing our previous results with the above ones
we can conclude that:

• since cylindrical contact models are restricted to
the 2D-geometrical considerations they are sim-
pler in a certain sense than the 3D-models;

• on the contrary, dynamical models became more
complex in some degree because the Johnson
model forces us to deal with the transcendental
equation having a singularity at zero;

• involute meshing requires additional analytic ef-
forts causing additional computational complex-
ity increase;

• compliant models create an effect similar to one
generated by the torsional elastic deformations of
gearwheels;

• compliant model built up showed an efficiency
high enough comparable with the fastest case of
geometrically rigid constraint;

• the computer model built up makes it possible in
an evident way to construct models of gearboxes
of any complexity for the spur involute type of
meshing.
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