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Abstract

In this paper a modeling approach for a Lithium-lon
cell online monitoring and offline benchmarking is
proposed. It combines physical modeling in
equivalent electric circuit representation with grid
tables of cell type characteristic information from
laboratory tests. The model is fully parameterized
and validated with cells used in the HighVoltage
battery pack of DLR research robotic electric vehicle
ROboMONbil.
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1 Introduction

Nowadays electric mobility gets more and more
important. New manufacturing methods give the
hope that in the near future vehicles for individual
transport can be fully electrified. The use of
secondary chemical energy storages is one of the
main development tasks in the automotive industry.
Besides of the development of new chemical
mixtures for higher power density and durability, it
is also necessary to develop new embedded systems
and advanced algorithms for battery management
systems and global energy distribution strategies.
The aim of these systems is to give a good
estimation for actual and future power availability
and health monitoring. This requirement is very
complex due to the nonlinear behavior, especially
with high performance Lithium-lon cells. Currently
no direct measurement method without destruction
of the cell is available to determine the major
characteristic parameters and states. In this paper a
model for use with recursive online estimation is
suggested which gives a good trade-off between

modeling accuracy and real-time requirements like
low order system or a minimal number of
(non)linear subsystems. The proposed algorithm is
successfully implemented, parameterized and tested
within the ROboMObil project (Figure 1, [Brell] ),
a research platform for future electric mobility
developed at the DLR Institute for Robotics and
Mechatronics.

Figure 1: ROboMObil test drive

The suggested model is also integrated in the
BatteryElectricVehicle model for drive cycle
simulations of the overall system in [Engl0] . It is
there applied for offline analysis and parameter
variation.

2 Different cell

modeling

approaches for

2.1  Models for offline purposes

To model the electric behavior of a cell, the obvious
thing to do is to use an equivalent circuit. As an
example for this type of modeling, the approach
from [B6h08] is presented. The cell behavior is
separated into three time domains. The impedance



determines the short-time range while the long-term
behavior is incorporated by a voltage source.
Finally, the transitional behavior is captured by a
number of exponential functions which are overlaid.

Another possibility for cell modeling is based upon
impedance spectroscopy measurements. An example
for this class of models can be found in [Sti08] with
its enhanced equivalent circuit. The level of detail is
significantly higher compared to [B6h08] due to the
continuous formulation from low to high frequency
effects. The following cell characteristics are
considered: ohmic resistances, parasitic inductances,
charge transfer and double layer capacity, diffusion
processes and formation of solid electrical interface.

For purposes of cell design, the Comsol Batteries
and Fuel Cells Module ( [Com10] ) is an advanced
modeling method. The model is so accurate that it is
possible to simulate the concentration of the
electrolyte and therefore enables battery engineers to
test different combinations of materials and
dimensions to optimize the cell behavior.

2.2 Models for online purposes

The presented offline models are not applicable to
embedded control systems due to their modeling
approaches and the relatively complicated
representations.  Available BatterieManagement
Systems, e. g. the widely used system from I+ME
Actia, use a predetermined cell characteristic table
and a current counting method without considering
the transient behavior of the cell.

Another and more advanced approach is the
EnhancedSelfCorrecting model by Plett proposed
in [Ple04] , [Ple04b] , [PleO4c] and [Ple04d] . The
cell is considered as a system with input "cell
current' and output "terminal voltage". The
StateOfCharge [ is included in the state vector and
therefore can be estimated by means of an
ExtendedKalmanFilter. The basis of the model is
the OpenCircuitVoltage U,y and the ohmic loss.
This is represented in the equivalent circuit in
Figure 2.
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Figure 2: Equivalent circuit representation

Beyond that, this approach takes into account
hysteresis effects. The remaining cell dynamics is
described by means of a current filter. Therefore,
this results in the following output equation:

Ucenn = Upey(D + h — Ry~ icey + up 1)
where h is the hysteresis voltage and u, represents
the influence of the current filter.

The implementation of the ESC model shows
significant optimization potential. There are several
better discretization methods than the proposed
explicit Euler 1 method. This helps in simulation
stability and accuracy for online and offline purpose
(see section 3.3 for details). The formulation of the
current filter also seems unnecessary complex, It is
formulated as an IIR Low Pass Filter as follows:
LowPass =1 — HighPass,.

Furthermore the computational costly online
parameterization of the filter by the use of a dual
estimation approach (see [Ple04d] ) can be done
offline. In this way the system order can be reduced
and therefore the online performance increases.
Moreover, the first implementations of the ESC
model at DLR have shown problems with the
determination of SOC. In addition, the effects of
current and temperature on the actual cell capacity
are not considered in the ESC model. These can
have an enormous influence on the calculation of the
SOC, cf. Figure 3.
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Figure 3: Capacity variation due to temperature and
current (Craee = Cn/1)



2.3 Proposal of the modifiedESC model

Since we are convinced of the basic approach with
the ESC model, we will introduce a modified version
that is different in several aspects. In the mESC
approach, the battery cell is represented by a
continuous state space model. Through this scheme,
the discretization algorithm can be changed and
methods with higher accuracy, such as Runge-Kutta
4, can be used. Due to the complex structure and
time consuming parameterization of the current
filter, it is replaced by a critical damping FIR filter
that only contains one parameter. Additionally, the
calculation of the SOC is improved by an
empirically determined correction factor that
accounts for the dependency of temperature and
current on the actual cell capacity. Lastly, the model
is parameterized using an offline optimization with
real training data and then verified by validation
data.

3  mESC model details

3.1 Derivation and model structure

The mathematical description of the mESC model is
given by the following:
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Ucent = Ugey(D +h —R; - fr4 3)

The differential equation for the SOC [ depends on
the cell current i..;;, the nominal cell capacity Cy,
the Coulombic efficiency n,4, and the correction
factor k;. This factor takes into consideration the
variation of the cell capacity as shown in Figure 3.
Following [Gra02] the correction factor is
determined by:

{ Cileen + kO fOT‘
k. = i icell >0 (chrg.)
P =

eCiteell + (kg — 1) for
ice” <0 (dchrg)

c; is a positive constant leading into a straight line

for positive cell current, which intersects the

ordinate at k,. For negative cell current the

(4)

correction factor is described by an exponential
function. The parameters ¢; and k, are gathered
from capacity tests replacing the simple straight line
with more accurate look-up tables.

The hysteresis voltage h is described by a more
complex equation taking into account the additional
factors M (polarization voltage) and y (time
constant). The remaining four differential equations
describe the optimized fourth order critical damping
current filter with the only remaining parameter w
and its four states ff,.

The output equation (3) is similar to the ESC
model’s output equation but aggregates the influence
of the cell current (ohmic loss and current filter) into
one summand.

3.2 Important variables and parameters

The internal resistance is one of the cell’s
descriptive variables, which depends on SOC, cell
current and temperature resulting in a three
dimensional look-up table. This relationship is
visualized for room temperature in Figure 4.
Considering equation (3) one can imagine easily that
the resulting cell voltage varies highly in case of low
SOC and high currents due to increase of the internal
resistance of the cell. In such cases the cell is in a
critical situation and can be damaged irreversible.
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Figure 4: Internal cell resistance for T =25°C

Another  important  cell variable is the
OpenCircuitVoltage, whose characteristic curve
incorporates the relationship between SOC and
OCV, as shown in Figure 5. This depiction also
shows the hysteresis effects very well. The blue and
red curves are measured during charging and
discharging of the cell with very low currents
respectively. This minimizes excitation of the cell
dynamics so that the cell terminal voltage can be
considered unloaded. In addition, the influence of
the internal resistance is eliminated during the data



analysis. The polarization voltage  is defined as
half of the difference between the two curves and
therefore also depends on the OCV.
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Figure 5: OpenCircuitVoltage

In Figure 6 the polarization voltage is plotted
depending on the temperature. It is apparent that
temperatures below —  have the highest influence.
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Figure 6: Polarization voltage

Finally, Figure 7 shows the dependency of a
exemplary correction factor on at room
temperature. Measurement data is collected only for
discharge and stored in a look-up table. For charging
the data is calculated using equation (4).
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Figure 7: Exemplary identification of ~ for T=25°C

The discussed model is implemented in Modelica as
part of DLRs ROMOEnergetic library. It is used for
offline simulations to optimize the energy
management strategies of the vehicle controllers and
implemented in the central control unit of the
ROboMO®bil using a rapid prototyping environment.
The resulting implementation in DYMOLA is
depicted as follows.
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Figure 8: mESC model implementation in DYMOLA
3.3 mESC model and Kalman filtering

The proposed mESC model has one input, cell
current, and one output, cell voltage. These two
guantities can be directly measured with high
accuracy even in embedded systems. The third
quantity is the cell temperature. It is determined by
the use of a thermocouple sensor on the cell surface.
This is the same method as applied in the cell test
bench (see section 4 for details). To achieve a better
estimation performance, a second measurement
equation is implemented. The idea in principal is to
take constraints into account with a recursive
Kalman Filter. For this purpose an additional



fictitious measurement is introduced. It can be
weighted through the tuning of the output covariance
matrix. This method is well known as perfect
measurements ( [Sim06] chp. 7.5.2). In this way the
output equation extends to:
Ucel
v=[ ©

The first equation is identical to formula (3) and the
second one can be derived as follows:

Ucenn = UOCV(Z) - Ri “leent
= Upey (D) = Ugey + Ry icen (6)
= U= lpeas = U(;L}V(ucell +R;- icell)

The measured SOC is calculated through the inverse
OCV/Uyg, look-up in combination with a low pass
filtering afterwards. This extension allows the
ExtendedKalmanFilter to adjust SOC directly and
therefore to enforce a physically correct estimation.
To use the proposed mESC model in an embedded
system for state estimation an EKF is implemented.
It handles the nonlinearities through linearization in
each time step. In Table 1 the algorithm for discrete
systems is shown as found in standard literature (e.
g. [Sim06] ).

Table 1: Extended Kalman Filter Algorithm

Initialization
Xo = E(xo)
Py = E[(xg — 25)(x — £5)]
Fork=1,2,..
Rie = fim1 (R_ 1, Upe—1)

Py =&, _Pi @, +Q

0fi_
where ®y_, = ];k !
P
Ky = PyHj - (HPiHi + R)™
dahy
where H, = —
d0x R

A+ A— A~
X =% + Ky (yk - hk(xk))
Pf=(U—Kg-Hy)-P;

Through the fact that our estimation model
(equations (2) and (5)) is in a continuous state space
formulation, it is necessary to discretize the model in
each time step. This can be done by several methods.
The easiest way is by the use of an Eulerl method.
Because of the poor stability (all poles have to be
placed within the unit circle of the time dependent
complex pane) we suggest using a Trapezoid method
(eq. (7)). It guarantees that the prediction step (X;)
is always stable, even for a large sampling time Ty,
as long as all poles of the continuous system stay in
the left half of the complex pane.

x(te) + 2+ T) _ x(tie +Ty) — x(t)
> = T @)

After some calculations the prediction step is
described as follows,

. T, o\
X = xl_:—l-l_ (1 - ;SFk—l) ' Tsfk (8)

where Fj,_; is the Jacobi matrix of the continuous
system with state vector kK — 1. To receive the
transition matrix ®,_, we have to solve the
following equation:

T, -1 T,
o, = (1 - ?Fk_l) - (1 + ;Fk_1> ©))

For reason of numerical stability all matrix
inversions are done by solving a linear equation
problem of the form A-x = b. This can be done
with LU solve2 from ModelicaStandard. In
conclusion we have an Extended Kalman Filter
algorithm which has 0 (nx3)-flops more than the
original filter, but outperforms it due to the fact that
the sampling time can be chosen much larger. This
is only limited by Shannon’s sample theorem for
sampling the measured signals in real-time. Another
limit is that the linearization of the EKF causes a
mean and covariance propagation which is only
valid to the first order. This is due to Taylor series
expansion being truncated after the first term. The
second issue can be improved by the use of higher
order methods like the Unscented Kalman Filter,
[Mer04] .

4 Parameterization and validation

In the ROboMODbil project we were able to obtain a
high performance cell from Li-Tec industries. It has
a nominal capacity of 40 Ah and with its security
features it is fully capable for series production. All
cell measurement for parameterization, testing, and
validations were done with a Votsch VT4011
environment simulator and a BaSyTec battery testing
system. The model parameter optimization is
accomplished with MOPS (see [Joo08] for more
information) on the Linux cluster of DLR RM
Institute. The detailed procedure and the necessary
test cycles are explained in [WielQ] . The list of
tuned parameters is given in Table 2.



Table 2: List of optimized parameters

y  Time constant for rate of change of the
hysteresis voltage

fg  Cut-off frequency of the fourth order
current filter with critical damping

fi  Cut-off frequency of the first order low
pass filter for smoothing the "measured"
SOC needed due to the extended output
equation

Covariance matrices for optimal EKF
settings (weighting of prediction by
means of the model and correction due to
the measured values)

Q,R

The optimization process can be summarized as
shown in Figure 9. As quality criterions cell voltage
and SOC are compared to their respective references
using the so-called fit value. The fit value weights
the reference to the simulated characteristic vector
and can be calculated as follows:

\/Z?ﬂ (|(Yh;i - J’i|2)

1 2
\/ ?=1<|yi_ﬁ' 1 Vi )

Since a direct comparison of SOC is not possible,
the actually and effectively moved amount of charge
at the terminals of the cell is used.
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Figure 9: MOPS optimization process

For the validation of the estimated model parameters
a testbench experiment by means of a simulated
drive cycle is used. The observer scheme is shown in
Figure 10. The aim is to produce an accurate
estimate of the battery StateOfCharge, which is a
decisive input for the function of the energy
management strategy. In this observer, the input u of
the battery model is the measured current, while the
model output yy, is the voltage of a single cell.

Figure 10: mESC observer structure

The model used in the observer was parameterized
by an offline optimization that uses measurements
test cycles and the characteristics of a single cell as
training data. In order to validate the resulting
parameterization, the battery was connected to an
electrical power supply/load and tested with a
simulated drive cycle. For this simulation, a model
of the longitudinal dynamics of the ROboMODbil was
developed in Modelica which calculates the energy
flow of all the power consumers in the electrical
system [Eng10] .
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A closed-loop controller calculates the actuator
demands in order to follow the specified driving
cycle. In this way, the required electrical power is
calculated. Figure 12 shows a normalized Artemis
Road cycle, which is synthesized by stochastic
calculations from real recorded driving data [And04]
. This reflects real driving behavior significantly
better than the purely synthetic ECE15 driving cycle
used in the homologation of European vehicles. The
calculated electrical power flow is then taken from a
Dymola simulation and scaled to one battery cell.
This data is used on the HIL test bench to give the
Lithium-lon cell the appropriate load current. The
results of this test, including the current, voltage, as
well as the cell temperature are used to test the
mESC model with EKF in the offline simulation.
The test results are shown in Figure 12, where the
measured and estimated values are compared to each
other. Evidently, the voltage values agree very well.
With almost 93% accuracy, the accordance of the
effective charge amount delivers a good result and
shows that the selected approach with the model-
based observer is of practical use.

5 Conclusions and future work

We have introduced a modeling approach for
Lithium-lon cells that shows good performance and
was implemented within a practical application
(ROboMODbil). Future development will extend the
model with real-time capable temperature dynamics
as suggested in [Che09] , [Mi07] and [Mat08] . This
should lead to better results in prediction of power
availability during critical situations like sub-zero
temperatures. Furthermore validation tests on the
rapid prototyping embedded systems in the
ROboMO®bil are planned. In the first weeks of

January 2011 we are able to accomplish roller bench
experiments with the ROboMODbil. We are looking
forward to gaining new insights from the recorded
measurement data of the energy system. The results
will be presented in an upcoming publication.
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