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determines the short-time range while the long-term 
behavior is incorporated by a voltage source. 
Finally, the transitional behavior is captured by a 
number of exponential functions which are overlaid. 

Another possibility for cell modeling is based upon 
impedance spectroscopy measurements. An example 
for this class of models can be found in [Sti08] with 
its enhanced equivalent circuit. The level of detail is 
significantly higher compared to [Böh08] due to the 
continuous formulation from low to high frequency 
effects. The following cell characteristics are 
considered: ohmic resistances, parasitic inductances, 
charge transfer and double layer capacity, diffusion 
processes and formation of solid electrical interface. 

For purposes of cell design, the Comsol Batteries 
and Fuel Cells Module ( [Com10] ) is an advanced 
modeling method. The model is so accurate that it is 
possible to simulate the concentration of the 
electrolyte and therefore enables battery engineers to 
test different combinations of materials and 
dimensions to optimize the cell behavior. 

2.2 Models for online purposes 

The presented offline models are not applicable to 
embedded control systems due to their modeling 
approaches and the relatively complicated 
representations. Available BatterieManagement 
Systems, e. g. the widely used system from I+ME 
Actia, use a predetermined cell characteristic table 
and a current counting method without considering 
the transient behavior of the cell.  
Another and more advanced approach is the 
EnhancedSelfCorrecting  model  by Plett proposed 
in [Ple04] , [Ple04b] , [Ple04c] and [Ple04d] . The 
cell is considered as a system with input "cell 
current" and output "terminal voltage". The 
StateOfCharge ݈ is included in the state vector and 
therefore can be estimated by means of an 
ExtendedKalmanFilter. The basis of the model is 
the OpenCircuitVoltage ܷை஼௏ and the ohmic loss. 
This is represented in the equivalent circuit in 
 Figure 2.  

 
Figure 2: Equivalent circuit representation 

Beyond that, this approach takes into account 
hysteresis effects. The remaining cell dynamics is 
described by means of a current filter. Therefore, 
this results in the following output equation: 

௖௘௟௟ݑ  ൌ ܷை஼௏ሺ݈ሻ ൅ ݄ െ ܴ௜ ⋅ ݅௖௘௟௟ ൅  ௙ (1)ݑ

where ݄ is the hysteresis voltage and ݑ௙ represents 
the influence of the current filter.  
The implementation of the ESC model shows 
significant optimization potential. There are several 
better discretization methods than the proposed 
explicit Euler 1 method. This helps in simulation 
stability and accuracy for online and offline purpose 
(see section 3.3 for details). The formulation of the 
current filter also seems unnecessary complex, It is 
formulated as an IIR Low Pass Filter as follows: 
ݏݏܽܲݓ݋ܮ	 ൌ 1 െ    .,ݏݏ݄ܽܲ݃݅ܪ
Furthermore the computational costly online 
parameterization of the filter by the use of a dual 
estimation approach (see [Ple04d] ) can be done 
offline. In this way the system order can be reduced 
and therefore the online performance increases. 
Moreover, the first implementations of the ESC 
model at DLR have shown problems with the 
determination of SOC. In addition, the effects of 
current and temperature on the actual cell capacity 
are not considered in the ESC model. These can 
have an enormous influence on the calculation of the 
SOC, cf. Figure 3. 

 
Figure 3: Capacity variation due to temperature and 
current (ܥோ௔௧௘ ൌ  (ܫ/ேܥ

  



2.3 Proposal of the modifiedESC model 

Since we are convinced of the basic approach with 
the ESC model, we will introduce a modified version 
that is different in several aspects. In the mESC 
approach, the battery cell is represented by a 
continuous state space model. Through this scheme, 
the discretization algorithm can be changed and 
methods with higher accuracy, such as Runge-Kutta 
4, can be used. Due to the complex structure and 
time consuming parameterization of the current 
filter, it is replaced by a critical damping FIR filter 
that only contains one parameter. Additionally, the 
calculation of the SOC is improved by an 
empirically determined correction factor that 
accounts for the dependency of temperature and 
current on the actual cell capacity. Lastly, the model 
is parameterized using an offline optimization with 
real training data and then verified by validation 
data. 

3 mESC model details 

3.1 Derivation and model structure 

The mathematical description of the mESC model is 
given by the following: 
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(2) 

 
௖௘௟௟ݑ  ൌ ܷை஼௏ሺ݈ሻ ൅ ݄ െ ܴ௜ ⋅ ௙݂ସ (3) 

 
The differential equation for the SOC ݈ depends on 
the cell current ݅௖௘௟௟, the nominal cell capacity ܥே, 
the Coulombic efficiency ߟ஺௛ and the correction 
factor ݇௜. This factor takes into consideration the 
variation of the cell capacity as shown in Figure 3. 
Following [Gra02] the correction factor is 
determined by: 

 ݇௜ ൌ

ە
۔

ۓ
ܿ௜ ⋅ ݅௖௘௟௟ ൅ ݇଴		݂ݎ݋

																					 ݅௖௘௟௟ ൐ 0	ሺ݄ܿ݃ݎ. ሻ
݁௖೔⋅௜೎೐೗೗ ൅ ሺ݇଴ െ 1ሻ	݂ݎ݋

																			݅௖௘௟௟ ൏ 0	ሺ݄݀ܿ݃ݎ. ሻ

 (4) 

ܿ௜ is a positive constant leading into a straight line 
for positive cell current, which intersects the 
ordinate at ݇଴. For negative cell current the 

correction factor is described by an exponential 
function. The parameters c୧ and k଴ are gathered 
from capacity tests replacing the simple straight line 
with more accurate look-up tables. 

The hysteresis voltage ݄	 is described by a more 
complex equation taking into account the additional 
factors ܯ (polarization voltage) and ߛ (time 
constant). The remaining four differential equations 
describe the optimized fourth order critical damping 
current filter with the only remaining parameter ߱ 
and its four states ௙݂௫. 

The output equation (3) is similar to the ESC 
model’s output equation but aggregates the influence 
of the cell current (ohmic loss and current filter) into 
one summand. 

3.2 Important variables and parameters 

The internal resistance is one of the cell’s 
descriptive variables, which depends on SOC, cell 
current and temperature resulting in a three 
dimensional look-up table. This relationship is 
visualized for room temperature in Figure 4. 
Considering equation (3) one can imagine easily that 
the resulting cell voltage varies highly in case of low 
SOC and high currents due to increase of the internal 
resistance of the cell. In such cases the cell is in a 
critical situation and can be damaged irreversible. 

 
Figure 4: Internal cell resistance for T =25°C 

Another important cell variable is the 
OpenCircuitVoltage, whose characteristic curve 
incorporates the relationship between SOC and 
OCV, as shown in Figure 5. This depiction also 
shows the hysteresis effects very well. The blue and 
red curves are measured during charging and 
discharging of the cell with very low currents 
respectively. This minimizes excitation of the cell 
dynamics so that the cell terminal voltage can be 
considered unloaded. In addition, the influence of 
the internal resistance is eliminated during the data 
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fictitious measurement is introduced. It can be 
weighted through the tuning of the output covariance 
matrix. This method is well known as perfect 
measurements ( [Sim06] chp. 7.5.2). In this way the 
output equation extends to: 

ݕ  ൌ ቂ
௖௘௟௟ݑ
݈ ቃ (5) 

The first equation is identical to formula (3) and the 
second one can be derived as follows: 

 
௖௘௟௟ݑ ൎ ܷை஼௏ሺ݈ሻ െ ܴ௜ ⋅ ݅௖௘௟௟	

⇒ ܷை஼௏ሺ݈ሻ ൎ ௖௘௟௟ݑ ൅ ܴ௜ ⋅ ݅௖௘௟௟	
⇒ 	݈ ൎ ݈௠௘௔௦ ൌ ܷை஼௏

ିଵ ሺݑ௖௘௟௟ ൅ ܴ௜ ⋅ ݅௖௘௟௟ሻ 
(6) 

The measured SOC is calculated through the inverse 
OCV/ܷை஼௏

ିଵ  look-up in combination with a low pass 
filtering afterwards. This extension allows the 
ExtendedKalmanFilter to adjust SOC directly and 
therefore to enforce a physically correct estimation. 
To use the proposed mESC model in an embedded 
system for state estimation an EKF is implemented. 
It handles the nonlinearities through linearization in 
each time step. In Table 1 the algorithm for discrete 
systems is shown as found in standard literature (e. 
g. [Sim06] ).  
Table 1: Extended Kalman Filter Algorithm 
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Through the fact that our estimation model 
(equations (2) and (5)) is in a continuous state space 
formulation, it is necessary to discretize the model in 
each time step. This can be done by several methods. 
The easiest way is by the use of an Euler1 method. 
Because of the poor stability (all poles have to be 
placed within the unit circle of the time dependent 
complex pane) we suggest using a Trapezoid method 
(eq. (7)). It guarantees that the prediction step (ݔො௞

ି) 
is always stable, even for a large sampling time ௦ܶ, 
as long as all poles of the continuous system stay in 
the left half of the complex pane.  

 
௞ሻݐሶሺݔ ൅ ௞ݐሶሺݔ ൅ ௦ܶሻ

2
ൌ
௞ݐሺݔ ൅ ௦ܶሻ െ ௞ሻݐሺݔ

௦ܶ
  (7) 

After some calculations the prediction step is 
described as follows, 

ො݇ݔ 
െ ൌ ො݇െ1ݔ

൅ ൅ ൬ܫ െ
ݏܶ
2
െ1൰݇ܨ

െ1

⋅  (8) ݂݇ݏܶ

where ܨ௞ିଵ is the Jacobi matrix of the continuous 
system with state vector ݇ െ 1. To receive the 
transition matrix	Φ݇െ1	we have to solve the 
following equation: 

 Φ݇െ1 ൌ ൬ܫ െ
ݏܶ
2
െ1൰݇ܨ

െ1

⋅ ൬ܫ ൅
ݏܶ
2
 െ1൰ (9)݇ܨ

For reason of numerical stability all matrix 
inversions are done by solving a linear equation 
problem of the form		ܣ ⋅ ݔ ൌ ܾ. This can be done 
with LU_solve2 from ModelicaStandard. In 
conclusion we have an Extended Kalman Filter 
algorithm which has ܱሺ݊ݔଷሻ-flops more than the 
original filter, but outperforms it due to the fact that 
the sampling time can be chosen much larger. This 
is only limited by Shannon’s sample theorem for 
sampling the measured signals in real-time. Another 
limit is that the linearization of the EKF causes a 
mean and covariance propagation which is only 
valid to the first order. This is due to Taylor series 
expansion being truncated after the first term. The 
second issue can be improved by the use of higher 
order methods like the Unscented Kalman Filter, 
[Mer04] . 

4 Parameterization and validation 

In the ROboMObil project we were able to obtain a 
high performance cell from Li-Tec industries. It has 
a nominal capacity of 40 Ah and with its security 
features it is fully capable for series production. All 
cell measurement for parameterization, testing, and 
validations were done with a Vötsch VT4011 
environment simulator and a BaSyTec battery testing 
system. The model parameter optimization is 
accomplished with MOPS (see [Joo08] for more 
information) on the Linux cluster of DLR RM 
Institute. The detailed procedure and the necessary 
test cycles are explained in [Wie10] . The list of 
tuned parameters is given in Table 2. 

  



Table 2: List of optimized parameters 

 Time constant for rate of change of the ߛ
hysteresis voltage 

௚݂ Cut-off frequency of the fourth order 
current filter with critical damping 

௟݂ Cut-off frequency of the first order low 
pass filter for smoothing the "measured" 
SOC needed due to the extended output 
equation 

ܳ, ܴ Covariance matrices for optimal EKF 
settings (weighting of prediction by 
means of the model and correction due to 
the measured values) 

 

The optimization process can be summarized as 
shown in Figure 9. As quality criterions cell voltage 
and SOC are compared to their respective references 
using the so-called fit value. The fit value weights 
the reference to the simulated characteristic vector 
and can be calculated as follows: 
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ی
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ۊ
⋅ 100 (10) 

Since a direct comparison of SOC is not possible, 
the actually and effectively moved amount of charge 
at the terminals of the cell is used.  
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Figure 9: MOPS optimization process 

For the validation of the estimated model parameters 
a testbench experiment by means of a simulated 
drive cycle is used. The observer scheme is shown in 
Figure 10. The aim is to produce an accurate 
estimate of the battery StateOfCharge, which is a 
decisive input for the function of the energy 
management strategy. In this observer, the input u of 
the battery model is the measured current, while the 
model output ym is the voltage of a single cell. 

 
Figure 10: mESC observer structure 

The model used in the observer was parameterized 
by an offline optimization that uses measurements 
test cycles and the characteristics of a single cell as 
training data. In order to validate the resulting 
parameterization, the battery was connected to an 
electrical power supply/load and tested with a 
simulated drive cycle. For this simulation, a model 
of the longitudinal dynamics of the ROboMObil was 
developed in Modelica which calculates the energy 
flow of all the power consumers in the electrical 
system [Eng10] .  

 

 
 
Figure 11: Artemis Road velocity profile and power 
consumption 
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A closed-loop controller calculates the actuator 
demands in order to follow the specified driving 
cycle. In this way, the required electrical power is 
calculated. Figure 12 shows a normalized Artemis 
Road cycle, which is synthesized by stochastic 
calculations from real recorded driving data [And04] 
. This reflects real driving behavior significantly 
better than the purely synthetic ECE15 driving cycle 
used in the homologation of European vehicles. The 
calculated electrical power flow is then taken from a 
Dymola simulation and scaled to one battery cell. 
This data is used on the HIL test bench to give the 
Lithium-Ion cell the appropriate load current. The 
results of this test, including the current, voltage, as 
well as the cell temperature are used to test the 
mESC model with EKF in the offline simulation. 
The test results are shown in Figure 12, where the 
measured and estimated values are compared to each 
other. Evidently, the voltage values agree very well. 
With almost 93% accuracy, the accordance of the 
effective charge amount delivers a good result and 
shows that the selected approach with the model-
based observer is of practical use.  

5 Conclusions and future work 

We have introduced a modeling approach for 
Lithium-Ion cells that shows good performance and 
was implemented within a practical application 
(ROboMObil). Future development will extend the 
model with real-time capable temperature dynamics 
as suggested in [Che09] , [Mi07] and [Mat08] . This 
should lead to better results in prediction of power 
availability during critical situations like sub-zero 
temperatures. Furthermore validation tests on the 
rapid prototyping embedded systems in the 
ROboMObil are planned. In the first weeks of 

January 2011 we are able to accomplish roller bench 
experiments with the ROboMObil. We are looking 
forward to gaining new insights from the recorded 
measurement data of the energy system. The results 
will be presented in an upcoming publication. 

6 Acknowledgment 

We would like to thank Prof. M. Otter for his 
support regarding implementation. His extensive 
knowledge of robust and reliable numerical matrix 
calculus was instrumental in achieving these good 
results. Furthermore we would like to thank 
LionSmart GmbH for the open discussions in points 
of model implementation. 

References 

[And04] André, M. (2004). The ARTEMIS European 
driving cycles for measuring car pollutant 
emissions. Science of The Total Environment , 
334-335, 73-84. 

[Com10] Batteries and Fuel Cells Module. Retrieved 
2010, from  
 http://www.comsol.com/showroom/gallery/686/ 

[Böh08] Böhm, K. A. (2008). Charakterisierung und 
Modellierung von elektrischen Energie-
speichern für das Kfz. Aachen: Shaker Verlag. 

[Bre11] Brembeck, J., Ho, L. M., Schaub, A., Satzger, 
C., & Hirzinger, G. (2011). ROMO – the 
robotic electric vehicle - Submitted for 
publication. IAVSD 

[Eng10] Engst, C., Brembeck, J., Otter, M., & Kennel, R. 
(2010). Object-Oriented Modelling and Real-
Time Simulation of an Electric Vehicle in 
Modelica. Technische Universität München 
 

0 2000 4000 6000 8000 10000 12000
3

3.5

4

 

 

Reference characteristic
Estimated characteristic (Fit=100.00%)

0 2000 4000 6000 8000 10000 12000

-40

-20

0

 

 

Reference characteristic
Estimated characteristic (Fit=92.96%)

Figure 12: Experiment results from Artemis Road Drive Cycle Test 



[Che09] Cheng, L., Ke, C., Fengchun, S., Peng, T., & 
Hongwei, Z. (2009). Research on thermo-
physical properties identification and thermal 
analysis of EV Li-ion battery., Vehicle Power 
and Propulsion Conference, 2009. VPPC '09. 
IEEE, 2009, 1643 -1648  

 [Gra02] Graaf, R. (2010). Simulation hybrider 
Antriebskonzepte mit Kurzzeitspeicher für 
Kraftfahrzeuge. Ika RWTH, Aachen. 

[iME10] i+ME ACTIA. (n.d.). Retrieved 11 2010, from 
http://www.ime-actia.com/download/ 
IR11652_BMS_GB.pdf 

[Joo08] Joos, H.-D., Bals, J., Looye, G., Schnepper, K., 
& Varga, A. (2008). MOPS: Eine integrierte 
optimierungsbasierte Entwurfsumgebung für 
mehrzielige, parametrische Analyse und 
Synthese. DGLR Workshop Systemident-
ifizierug, Parameterschätzung und Optimierung. 

[Lio10] LionSmart. (2010). Retrieved 11 2010, from 
http://www.lionsmart.com/ 

[Mat08] Matsushita, T., Yabuta, K., Tsujikawa, T., 
Matsushima, T., Arakawa, M., & Kurita, K. 
(2008). Construction of three-dimensional 
thermal simulation model of lithium-ion 
secondary battery., Telecommunications Energy 
Conference, 2008. INTELEC 2008. IEEE 30th 
International, 2008, 1 -6  

[Mer04] Merwe, R. , Wan, E., & Julier, S. (2004). Sigma-
Point Kalman Filters for Nonlinear 
Estimation and Sensor-Fusion: Applications 
to Integrated Navigation, AIAA Guidance, 
Navigation, and Control Conference and Exhibit, 
2004  

[Mi07] Mi, C., Li, B., Buck, D., & Ota, N. (2007). 
Advanced Electro-Thermal Modeling of 
Lithium-Ion Battery System for Hybrid 
Electric Vehicle Applications., Vehicle Power 
and Propulsion Conference, 2007. VPPC 2007. 
IEEE, 2007, 107 -111  

[Ple04] Plett, G. (2004). High-performance battery-
pack power estimation using a dynamic cell 
model. Vehicular Technology, IEEE 
Transactions on , 53 (5), 1586-1593. 

[Ple04b] Plett, G. L. (2004). Extended Kalman filtering 
for battery management systems of LiPB-
based HEV battery packs: Part 1. Back-
ground. Journal of Power Sources , 134 (2), 
252-261. 

[Ple04c] Plett, G. L. (2004). Extended Kalman filtering 
for battery management systems of LiPB-
based HEV battery packs: Part 2. Modeling 
and identification. Journal of Power Sources , 
134 (2), 262-276. 

[Ple04d] Plett, G. L. (2004). Extended Kalman filtering 
for battery management systems of LiPB-
based HEV battery packs: Part 3. State and 
parameter estimation. Journal of Power 
Sources , 134 (2), 277-292. 

[Sim06] Simon, D. (2006). Optimal State Estimation: 
Kalman, H Infinity, and Nonlinear 
Approaches (1. Auflage ed.). Wiley & Sons. 

[Sti08] Stiftl, J. (2008). Modellierung und Bewertung 
von Fahrzeugen mit seriellem Plug-In 
Hybridantrieb. Hochschule Karlsruhe – 
Technik und Wirtschaft: Diplomarbeit. 

[Wie10] Wielgos, S., Brembeck, J., Otter, M., & Kennel, 
R. (2010). Development of an Energy 
Management System for Electric Vehicles 
Design and System Simulation. Technische 
Universität München. 

 

 


