
Towards a model driven Modelica IDE

Roland Samlaus1 ClaudioHillmann1 BirgitDemuth2 MartinKrebs2

Fraunhofer Institute for Wind Energy and Energy System Technology1

Technische Universität Dresden, Institut für Software- und Multimediatechnik2

Abstract

Model Driven Software Development evolved into a
common way of creating software products. Describ-
ing software in a more abstract way simplifies and
speeds up the development process and generated code
turns out to fulfill high quality standards. As a subcat-
egory of model driven development Domain-Specific
Languages concede to express problems in a domain
specific way. By defining a languages grammar, an
editor that provides basic support for developers can
be generated automatically. This paper describes how
these concepts are utilized for the creation of a Model-
ica Integrated Development Environment (IDE). Help-
ful functionality is implemented in a model driven way
to maximize assistance during the development pro-
cess. Thus the developer receives a tool that allows
to survey large scale projects and provides functional-
ity that is well known in other popular programming
languages. Furthermore an approach for semantical
verification of Modelica documents during the devel-
opment process is presented. This allows to detect and
correct errors early.

Keywords: Modelica, IDE, OCL, verification

1 Introduction

In the last years the importance of Modelica in the field
of engineering increased significantly. Many compa-
nies utilize the language for modeling and simulation
of physical systems. Thus the support for developers
became a vital issue to enable the survey of extensive
projects. One approach is the development of libraries
as done by the Modelica community. Libraries provide
common functionality that can be easily reused and ex-
tended and thereby increase the speed of development
and ensure high quality of the resulting models.

An additional approach is the usage of development
tools. These support the engineer during the imple-
mentation of big physical systems (e.g. Dymola1 and

1http://www.dymola.com

OpenModelica2). Although the above mentioned tools
turned out to be very helpful, supplementary features
are desired to ease the handling of complex models.
This topic is well known in the software engineering
community as well. Therefore we aim at transferring
main features to the Modelica world. The structure
of our Modelica Integrated Development Environment
(IDE) and how it was created by model driven tech-
nologies is explained in section 2.

Besides the goal to facilitate daily work for engi-
neers with Modelica, the quality of the outcome has
to be addressed. Regarding this purpose the developer
has to be encouraged to create syntactically and se-
mantically correct documents. While the syntax can
be checked easily, semantic correctness may be hard
to prove because semantic constraints may demand ex-
tensive calculations. This issue is addressed in sec-
tion 3 and our approach of utilizing Object Constraint
Language (OCL) for verification of Modelica models
is stated.

In section 4 some components of the IDE e.g. the
editor and views are presented. Finally a summary and
future work will conclude this paper in chapter 5.

2 The MDSD approach

Model Driven Software Development (MDSD) is an
approach that eases the development process by pro-
viding a higher abstraction level of the software that
is being developed. Compared to pure code-based de-
velopment, the architecture can be described in a more
conceptual and structured way. A common way is to
design the structure and behavior of software with the
help of Unified Modeling Language (UML) diagrams.
But graphical representation is not the only popular
way of an abstract description. In the MDSD commu-
nity the usage of Domain-Specific Language (DSL)s
became more and more important.

DSLs allow the definition of problems in a domain
specific way and therefore provide an easy way to ex-

2http://www.openmodelica.org

press ideas to the domain experts. This can be done
graphically as well as in a textual syntax. The Model-
ica language can also be seen as a textual DSL, since
it allows the developer to describe physical systems.

As Eclipse builds the basis for our IDE it is evident
to use Eclipse Modeling Framework (EMF) as plat-
form for our models. All data being processed by EMF
are based upon ECore that is more or less aligned on
Object Management Group (OMG)s Essential Meta
Object Facility (EMOF) 3 standard. All generated ob-
jects extend a basic interface that allows interoperabil-
ity between objects of different meta-models. More
details about the functionality of Ecore can be found
on the EMF website 4.

The project structure of the IDE has been defined
with the help of EMF tools. Several ways [8] of
describing an Ecore-based meta model are available,
like Java annotations or XML, whereas the usage of a
UML-like graphical editor might be the most appeal-
ing way for developers. The Modelica DSL was cre-
ated with Xtext5, an Open Source framework for the
development of DSLs. It also uses the functionality
provided by EMF and therefore enables to easily inter-
act with our data models as described in Section 2.2.

In the next sections the creation of the Modelica
DSL is described and the underlying data structure ex-
plained. Figure 1 gives an overview of the used tools.

2.1 Metamodeling of Modelica with Xtext

For the textual syntax definition of Modelica we use
the tool Xtext, that is part of the Eclipse Modeling
Project. Xtext’s syntax for defining language gram-
mars closely resembles the Extended Backus-Naur
Form (EBNF) notation. Based on this grammar several
components are generated automatically. A Tokenizer
splits the given text documents into parts that can be
interpreted by a parser. The parser that is generated
by the parser generator framework ANTLR [3][10]
creates an Abstract Syntax Tree (AST) and a Con-
crete Syntax Tree (CST) of the given text document.
Thereby we get an editable tree-like data structure that
can be processed by additional software components.
The AST represents the structure of a Modelica doc-
ument. Additionally the CST keeps all information
about the concrete representation inside the document
e.g. literals and white spaces. Based on the grammar,
syntax highlighting and basic code completion for the
generated editor is provided. The parser recognizes

3http://www.omg.org/
4http://www.eclipse.org/modeling/emf/
5http://www.eclipse.org/Xtext/

syntactical errors and displays them inside the editor
and in a separate problems view. The view contains
detailed descriptions of the errors and allows to jump
into the erroneous area of the document.

Eclipse Platform

Eclipse Views
Eclipse

Modeling
Framework

Eclipse
Text Editor

Xtext Modelica
Editor

Eclipse
OCL

Modelica GUI
Components

Modelica IDE

Figure 1: Overview of tools used in the Modelica IDE

Additional to these basic tools, other components
are generated that use the AST, for example an outline
view that represents the inner structure of opened doc-
uments, i.e. inner classes, sub-packages and compo-
nent declarations. One of the main amenities of Xtext
is the integrated resolution of references. Based on this
mechanism, the developer can jump to class defini-
tions to investigate implementation details. References
are also used as types for component declarations or as
extended classes. The references connect ASTs of dif-
ferent documents and thereby form a kind of overlay
graph. If referenced objects cannot be found, the af-
fected part of the document is again marked with an
error.

However, because of the complex structure of Mod-
elica documents and for performance reasons, special
index and linking mechanisms had to be implemented.
Based on the index information additional help func-
tions were created, e.g. the proposal of classes that can
be referenced at a certain position inside the document.

The usage of Xtext for grammar definitions is
covered below by a small example. Listing 1 de-
picts Modelica’s grammar definition for the element
ImportClause.

An import clause starts with the keyword
``import'' followed by an optional abbreviation
definition. Optional rules are defined by a question
mark. In many Modelica documents SIunits are
imported with the definition of an abbreviation:
``SI = Modelica.SIunits;''. This allows to
write shorter expressions when using type definitions
from the SIunits package.

" i m p o r t " (ab b r e v =Name "=") ?
r e f e r e n c e =[A b s t r a c t C o n t e n t]
w i l d c a r d ?= " .∗ " ? comment=Comment ? ;

Listing 1: Import clause definition in Xtext

The next rule defines a reference to an
AbstractContent. AbstractContent is an-
other grammar rule that represents different kinds
of Modelica class contents, e.g. the standard class
structure or an extends clause. For more details on
the Modelica class structure see [9]. In Xtext square
brackets define references to other objects. This is a
Xtext specific feature that is not defined in EBNF. A
generic linking mechanism is provided that resolves
the reference by searching for an AbstractContent

whose name attribute of type String matches the
given input.

Import clauses are not restricted to import single
Modelica classes but also a set of sub-classes inside
a package. This is indicated by the use of a wild
card “*”. Using a reference to AbstractContent

does not respect the fact that only packages can be re-
ferred to when using wild cards. In this definition we
do not distinguish between Modelica classes, models,
packages and so forth on the syntax level. Therefore
the correctness of the rule has to be regarded by the
semantics of Modelica. This is surveyed in section 3.
Finally an optional comment adds additional informa-
tion about the import for developers.

Altogether the grammar definition consists of over
100 rules. Performance issues during parsing pre-
vented us from reusing the language definition from
the Modelica language specification [9], so that we
were forced to create an optimized version. More-
over, the complexity of the resulting AST would have
made it difficult to modify or investigate the parse re-
sults. As an example, the definition of expressions has
been simplified. We do not distinguish between logical
expressions, terms, or factors but only define a single
type of expression. If needed, the type can be derived
by investigating the operator of an expression. This
enabled us to reduce the number of rules to 4 com-
pared to 12 defined in the Modelica language specifi-
cation [9].

2.2 Project structure definition with EMF

For the sake of reuse, Modelica documents should be
structured in projects. When defining e.g. a wind en-
ergy plant, every component like Tower, Nacelle or
RotorBlade ought to be encapsulated in its own unit.
If the components are divided into different projects,

they can be interchanged easily. This helps the devel-
oper to survey the structure of the designed physical
systems. Furthermore, the reuse of functionality from
libraries like the Modelica Standard Library is essen-
tial.

Separating components into projects requires a
mechanism that enables linking between models in-
side separate projects. A WindTurbine e.g. reuses
the component Tower for the definition of a new wind
turbine. Therefore a link between the wind turbine’s
definition and the document where the tower is de-
fined in has to be established. This ensures the exis-
tence of the reused component and enables the user
to quickly display the tower’s definition. In order to
be able to find this kind of references quickly, meta
data must be provided that holds additional informa-
tion about the class structure and location of Model-
ica files. This data structure is defined with EMF. The
central data in this structure is called ModelResource.
A ModelResource can contain source folders. All
Modelica source files contained in these source folders
belong to the same ModelResource. When a source
file is parsed, the internal structure is analyzed and
stored in an index file. These files are again cou-
pled to the ModelResource. Hence ModelResources
know the name space of all contained models and
allow quick linking by the use of qualified names.
Qualified names distinctly address a component in-
side a name space like in Modelica.SIunits.Angle

whereas Modelica and SIunits represent packages
and Angle is a type definition inside this package.

At first sight the proposed project structure looks
quite similar to the one Eclipse uses for plug-in
projects. In fact many concepts are reused but also
altered to meet our requirements (see figure 2). Us-
ing ModelResources instead of projects as manage-
ment unit allows to have several name spaces inside
one project. This is important when simulations are
performed. The source files of several simulations can
be kept in the same project and allow to keep track
of source code changes between different simulations.
In the project based approach it would be impossi-
ble to keep multiple class definitions with the same
qualified name. To enable linking, every experiment
gets its own ModelResource that knows the files used
for simulation. The ModelResource mechanism is
also used to enable referencing other projects in the
workspace. Projects can be exported as compressed
and possibly encrypted libraries. The meta data are
kept inside the archive, therefore no further analysis
of the contained source files is needed when libraries

are reused. The creation of libraries serves two pur-
poses: First it allows to assemble specific function-
ality into one library that can be shared among users
or maybe even sold to customers; Secondly, using li-
braries speeds up the development process because
handling of a huge number of source files can lead to
a slow development environment and an increasing re-
action time of the systems on user interaction.

Using EMF turns out to be very helpful, because the
data defined in EMF automatically has a persistence
model. Also references between EMF-based files are
resolved automatically. Furthermore it provides a sys-
tem for change notification that allows to react on any
changes of the meta data.

Figure 2: Data structure of the Modelica IDE

3 Verification of Modelica documents

Enhanced verification of code is desired during devel-
opment to immediately ensure the correctness of the
created models. Two kinds of verification can be dis-
tinguished - dynamic and static verification.

3.1 Dynamic versus static verification

Dynamic verification of Modelica models is, at the
moment, a difficult topic because for this issue mod-
els have to be interpreted on instances. For instance,
to ensure that a parameter does not exceed a specified
value, the equations altering the variable must be cal-
culated. But currently these calculations are done by
translation of Modelica source code to a different pro-
gramming language like C++ and execution of the re-
sulting program code. That means no interpreter work-
ing directly on Modelica source code is available but
the code is transformed to another kind of program-
ming language and then executed.

The same problem is faced when trying to debug
Modelica code like it is done in other object oriented
languages, e.g. Java. It may be possible to implement

an interpreter for basic Modelica language constructs
and simple models that do not contain any equations.
But at the moment there is no solution available that
solves Differential Algebraic Equations (DAE)’s dur-
ing development time.

The MDSD-community is, by the way, facing the
same problem. Instead of generating code that has to
be executed, interpreters are often desired that create
functionality based on objects. Therefore solving the
problem of interpreting models directly could solve
the problem of debugging and verification as well as
reduce the required time during development.

However static verification is currently done for a
wide range of models (e.g. Modelica, UML, Java, . . .).
Several techniques are available for the verification of
models. One could write Java-Code or utilize special-
ized languages like Check, that is delivered with the
Xtext-Framework. In our IDE we use OCL [2] which
is a standard language of the OMG. It is spread in re-
search and industry and thus is typically to be under-
stood by many developers. The static verification of
Modelica with OCL is presented in the next section.

3.2 Static verification with OCL

In the Modelica specification the semantics of the lan-
guage is verbally specified. We interpreted the Model-
ica semantics as Well-Formedness Rules (WFR)s and
found 201 WFRs which we translated into OCL con-
straints. The WFRs differ from each other in terms
of complexity. Some constraints are quite easy to de-
fine and the execution time is short. Others are com-
plex and often recursive. The complexity and recursiv-
ity is conditional upon the underlying Modelica meta-
model and OCL as a language that specifies naviga-
tion paths through a model. This can cause the veri-
fication to take a long time because large parts of the
AST have to be considered during the interpretation of
the constraints. In the following OCL will be shortly
introduced. Then the definition of some WFRs is ex-
plained.

3.2.1 OCL

OCL is a language that allows the definition of con-
straints on objects. Originally it was designed to en-
able more precise UML diagram definitions. Later
OCL has been extended to a query language and is
generally in metamodeling. Figure 3 displays a sim-
ple example of an UML class where the attribute age

inside the class Person is constrained. The invariant

ensures that the age is higher than 17 to fulfill the re-
quirement of being an adult.

Figure 3: A simple OCL example

Besides invariants OCL also allows to define queries
to collect objects. Furthermore the definition of new or
derived model elements (attributes, associations, oper-
ations) is allowed and helpful to reuse common func-
tionality. OCL also defines a standard library that pro-
vides basic functionality like operations on collections
(e.g. checking if a set is empty). The language de-
scription and examples can be found in the OCL spec-
ification [2].

3.2.2 Modelica and OCL

As mentioned above, OCL is not restricted to be used
for UML diagrams but can principally be applied to
arbitrary object structures [5]. The only restriction
is, that the interpreters need to be able to handle the
constrained model. This usually means that the meta
model of the restricted language must be available and
the interpreter must be able to read the data format. As
we use Xtext for the definition of our Modelica lan-
guage, the resulting AST is based on Ecore. Hence
an Ecore based OCL interpreter is needed. Therefore
two popular OCL interpreters that fulfill this require-
ment were evaluated for verification, Eclipse OCL6

and Dresden OCL7 [13].
The basis for the verification of Modelica code is

the AST of a Modelica document. It is created by the
parser that Xtext generates based on the grammar def-
inition. Thus the AST represents the structure of the
Modelica document and can be used to check whether
the structure is correct. OCL constraints are defined
and evaluated on the AST.

The OCL constraints were used to measure the per-
formance of both tools mentioned above. Furthermore
the constraints were analyzed to find time consuming
rules. This is important when dealing with user inter-
faces because users do not accept lags when editing
documents because of verification tasks that are per-

6http://www.eclipse.org/modeling/mdt/?project=ocl
7http://www.reuseware.org/index.php/DresdenOCL

non-recursive recursive
constraints constraints

constant time x -
linear time x x

quadratic time x x
exponential time - x

Table 1: Classification of OCL constraints by their
complexity

formed in the background. Two categories with dif-
ferent complexity and calculation times were detected
(Table 1).

Short examples for non-recursive constraints will il-
lustrate the definition of Modelica WFR in OCL. List-
ing 2 represents a constraint that can be evaluated in
constant time:

inv p r e d e f i n e d _ s t r i n g _ t y p e :
name <> ’ S t r i n g ’

Listing 2: Non-recursive OCL with constant time con-
straint

Each component declaration in Modelica has a
name. In our grammar this is reflected as a rule
ComponentName with the attribute name. Because
Modelica reserves some names for components (i.e.
String), these names are not allowed for newly de-
fined components. The OCL invariant given in List-
ing 2 ensures that the name String is not assigned
to a component. As no other objects have to be con-
sidered, the calculation depends only on the object
ComponentName resulting in a constant calculation
time.

A linear non-recursive constraint is defined in List-
ing 3:

c o n t e x t Component
inv component_name_type :
not componentnames−> e x i s t s (
name = s e l f . t y p e . name)

Listing 3: Non-recursive OCL constraint with linear
time

Figure 4 shows the result of our validation in the
editor and the problems view.

Components in Modelica classes must not have
the same name as their type. It is e.g. prohib-
ited to define a component Angle Angle;. The
constraint in Listing 3 checks whether a name ex-
ists (componentnames->exists()) that is equal the
name of the components type (self.type.name).
The calculation time coheres directly with the num-

Figure 4: Displaying verification errors

ber of instances that are defined in the component and
thus increases linearly.

Another problem is the test for uniqueness which
results in quadratic calculation time. If uniqueness
of element names in an enumeration shall be ascer-
tained, all elements have to be compared with each
other (as long as the model elements are not stored in a
relational database). Thus the calculation time grows
quadratically to the number of elements. The corre-
sponding OCL constraint is defined in Listing 4:

c o n t e x t E n u m e r a t i o n L i s t
inv u n i q u e _ e n u m _ l i t e r a l s :
e n u m e r a t i o n l i t e r a l s −>i s U n i q u e (
componentname . name)

Listing 4: Non-recursive OCL constraint with
quadratic time

Most of the OCL constraints defined for the verifi-
cation of Modelica documents are of recursive nature
because most WFRs originate in restrictions on inher-
itance structures. As a result many parts of the model
have to be considered for verification. Although the
effort of calculating non-recursive rules may result in
quadratic time as seen above, recursive rules are even
worse.

For complexity reasons, only one recursive con-
straint with exponential time is explained in this pa-
per (Listing 5). The Modelica specification defines
the rule: “The type prefixes flow, input, and output

shall only be applied for a structured component, if no
elements of the component have a corresponding type
prefix of the same category.” [9] The function defini-
tion in Listing 5 returns a Boolean value that indicates,
whether a Modelica class contains a component def-
inition with the prefix flow, input, or output (the
collection of components is defined in another func-

tion collectIOComponents()). Not only the ana-
lyzed class has to be considered for this constraint,
but all super classes from which the instance inher-
its. This requires the invoking of the same func-
tion containsIOPrefixes() recursively and results
in the complexity O(nr) where n describes the number
of super classes and r the recursion depth.

c o n t e x t A b s t r a c t M o d e l i c a C l a s s
d e f : c o n t a i n s I O P r e f i x e s () Boolean =

c o l l e c t I O C o m p o n e n t s ()−> s i z e >0
or

c o l l e c t E x t e n d s C l a u s e s ()−> e x i s t s (
c o n t a i n s I O P r e f i x e s)

Listing 5: Recursive OCL constraint with exponential
time

Because of the complexity of the resulting con-
straints not all WFRs from the Modelica specifica-
tion have been implemented yet. In a first version of
the Modelica IDE (Section 4 we decided to integrate
Eclipse OCL because of its better interpreter perfor-
mance. In addition to the rules from the specification,
further constraints may be helpful for daily work. E.g.,
warnings could be displayed if to many subclasses in
a document exist or the package structure is too deep.
This functionality may be integrated in a later version
of our IDE.

4 Modelica IDE

In this section the main parts of our IDE, which sup-
ports the developer in the creation and manipulation of
models are presented. First the features of the gener-
ated and enhanced Modelica editor are presented (Sec-
tion 4.1), then it is explained how additional views
simplify the development process (Section 4.2).

4.1 Editor

Modern Modelica IDEs support the user in the devel-
opment process by providing editors and related tools
that ease the handling of big projects. Editors pro-
vide syntax highlighting to emphasize language spe-
cific keywords and to reveal the structure of the written
code, making it easier for the developer to understand
the code. Highlighting and the recognition of syntacti-
cal errors is provided by Modelica specific lexers and
parsers that can either be hand written or generated by
tools like ANTLR as described in Section 2.1. Fur-
thermore semantical highlighting may be provided but
should only be checked where the calculation can be
done quickly. In Figure 5 the simple data type Real

(gray, italic) is highlighted semantically while all other
decorations are provided by the generated lexer. Code
folding allows to reduce the complexity of the dis-
played code, e.g. by hiding annotations that contain
arbitrary information. With the integrated mouse-over
help, details about utilized classes that are defined as
comments in the declaration can be explored by the
developer.

Figure 5: Xtext Modelica editor

Based on the index data, code completion supports
the developer in choosing sub-components of classes.
This is helpful during the definition of import clauses
or components and helps to speed up the development
process significantly.

Error markers for non-existent referenced classes
are automatically created. This is an advantage com-
pared to editors like the ones integrated in Dymola, or
Modelica Development Tooling 8 because developers
immediately recognize these kind of failures. A quick
fix using a comparable mechanism as code completion
tries to provide a suitable solution.

4.2 Views

The Modelica IDE has several views that display ad-
ditional information on the projects data. The main
view is the Eclipse project explorer that has been ex-
tended to fulfill the needs of a Modelica IDE. The con-
tained packages and classes of Modelica files as well
as the package structure of referenced libraries are dis-
played as shown in Figure 6. Each of these classes
can be inspected in the editor whereas library docu-
ments are opened read-only to avoid the modification
of the source code. References inside the documents
are linked to allow quick browsing through the source
code and the exploration of class declarations. The

8http://www.ida.liu.se/ pelab/modelica/OpenModelica/MDT/

Eclipse outline view displays the inner structure of the
opened document. All actions that are triggered in the
user interface are implemented as Open Services Gate-
way initiative (OSGi) 9 events. Together with an Xtext
based DSL that was specified for scripting purposes,
we are able to record these actions and save them in a
file. The engineer can edit or create a script document
for automatic execution of actions. This includes the
simulation of models with the coupled solvers Dymola
and Mosilab [1].

Figure 6: Modelica Project Explorer

5 Conclusion and future work

With the help of MDSD techniques we were able to
implement a Modelica IDE in a short period of time.
Generated code ensures high quality products and re-
duces the implementation time by automatic creation
of frequently used components like data structures and
serialization mechanisms. Since the generated code is
based on the same data description (Ecore), interoper-
ability is guaranteed. Therefore augmenting the gener-
ated editor with additional functionality became easy.

The introduced IDE enables the Modelica developer
to create models fast and easy. The verification and
referencing mechanisms ensure correctness through-
out the development process. The views on the Mod-
elica data structure help surveying large projects. En-
capsulating source code into libraries speeds up the
user interaction and encourages the developer to create

9Open Services Gateway initiative, http://www.osgi.org

models as components. This helps in creating frame-
works that can be shipped and reused as libraries.

During the development some performance issues
arose that should be considered in the future. This be-
came evident when the Modelica Standard Library was
imported as a source project. The low performance of
parsing all library files is engendered by the complex
Modelica grammar that causes a lot of back-tracking
during parsing. Allowing the use of a different parser
generator than ANTLR to generate a LR(k) parser

might help solving this issue. Also future modifica-
tions of the grammar definition might speed up pars-
ing, e.g. by defining a unique start and end termi-
nal sign for annotations. In many documents the per-
centage of annotations compared to executable code is
very high. These parts of code should only be parsed
if they are needed for example when visualizing the
models. Thus a second optimized parser could be in-
troduced for annotations.

Performance issues are a big problem in our ap-
proach. Comparing the parser generated by Xtext with
the one of the Modelica SDK[11] [12] which is based
on the same parser generator technology (ANTLR)
might be useful in finding the reasons for these prob-
lems. Furthermore the mechanisms of verification
should be compared regarding completeness and per-
formance.

A nice feature to have is an editor that allows the de-
veloper to compose models from components graphi-
cally, like Dymola does. As we use Ecore as basis
for our data, the Graphical Modeling Project Graph-
ical Modeling Project (GMP)10 might be a suitable
solution for this task. However, the embedding of
graphical information inside annotations of the Mod-
elica documents instead of separate files might cause
problems when using GMP. In our opinion, layout in-
formation and executable code should be separated as
both are independent concerns.

Furthermore, the refactoring of Modelica models
should be addressed in the future. Many of the refac-
torings introduced in [7] would be helpful in Model-
ica, as it is suitable for most object oriented languages.
In [6] an impressive way of source code refactoring by
role definitions is explained and demonstrated based
on EMFText11. At the moment serializing with Xtext
is error-prone and therefore prevented us from inte-
grating the refactoring tool into our project. This
will be done as soon as the serialization problems are
solved.

10http://www.eclipse.org/modeling/emf/
11http://www.emftext.org/index.php/EMFText

References

[1] J. Bastian, O. Enge-Rosenblatt, P. Schneider:
MOSILAB - a Modelica solver for multiphysics
problems with structural variability. Conference
on Multiphysics Simulation - Advanced Methods
for Industrial Engineering, January, 2010, Bonn,
Germany

[2] The Object Management Group
(OMG): OCL 2.2 Specification. 2010,
http://www.omg.org/spec/OCL/2.2

[3] T.J. Parr, R.W. Quong: ANTLR: A Predicated-
LL(k) Parser Generator. Software | Practice and
Experience 25(7) (1995) 789-810

[4] F. Budinsky, S.A. Brodsky, E. Merks: Eclipse
Modeling Framework. Pearson Education, 2003

[5] M. Seifert, R. Samlaus: Static Source Code
Analysis using OCL. In: Proceedings of the
Workshop OCL Tools: From Implementation to
Evaluation and Comparison, OCL 2008, Satel-
lite event of the 11th International Conference on
Model Driven Engineering Languages and Sys-
tems (MoDELS 2008), September 28 - October
3, 2008, Toulouse, France

[6] J. Reimann, M. Seifert, U. Assmann: Role-Based
Generic Model Refactoring. In: Lecture Notes in
Computer Science (LNCS 6395) - Model Driven
Engineering Languages and Systems, Springer,
2010, 78-92

[7] M. Fowler: Refactoring: Improving the Design
of Existing Code, Addison-Wesley, Boston, MA,
1999

[8] D. Steinberg, F. Budinsky, M. Paternostro, E.
Merks: EMF: Eclipse Modeling Framework,
Addison-Wesley, 2009

[9] Language Specification, Modelica - A Uni-
fied Object-Oriented Language for Physical
Systems Modeling Version 3.1, May, 2009,
https://www.modelica.org

[10] T. Parr: The Definitive ANTLR Reference:
Building Domain-Specific Languages, Prag-
matic Bookshelf, May, 2007

[11] M. Tiller: Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions, In: Proceedings of the 3rd International

Modelica Conference, November 3-4 2003,
Linköping, Sweden

[12] P. Harman, M. Tiller: Building Modelica Tools
using the Modelica SDK, In: Proceedings 7th
Modelica Conference, September 20-22 2009,
Como, Italy

[13] M. Krebs: Verifikation von Modelica-
Programmen mit OCL, Diploma thesis, TU
Dresden 2010

