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Abstract

Modelica enables rapid development of detailed mod-
els of heterogeneous and complex systems. However,
resulting models are as complicated as reality itself
and therefore it may be hard to identify causes for
model behavior or verify that model behaves correctly.
A traditional engineering approach is to use intuition
and experience to identify important parts of the model
with the highest impact on model behavior for spe-
cific scenario. Numerous model order reduction and
simplification techniques (i.e., metrics used by these
methods) have been developed to automatically esti-
mate important parts of the models for a certain sce-
nario and thus alleviate reliance on subjective factors,
i.e., intuition and past experience.

In this paper are discussed model order reduction
and simplification techniques (e.g., metrics used by
these techniques for rankings of elements) which are
applicable to wide range of Modelica models built
from already available libraries. Modelica models are
translated to set of differential-algebraic equations and
for the latter there are numerous tools for model order
reduction already available. However, these tools are
not designed for helping users understand the model’s
behavior and the reduced model may be hard to un-
derstand by the user because the structure of the origi-
nal model is lost. Hierarchical decomposition of the
model must be presereved and if the model is de-
veloped with a graphical schematics then elements
(nodes) of the schematics must be ranked. Therefore
we adapted energy-based metrics used in ranking of
bond-graphs’ elements to much more losely defined
Modelica’s schematics, so they can be used comple-
mentary with ranking methods that work with equa-
tions.

Keywords: model order reduction; model simplifi-
cation; verification

1 Introduction

An important aspect of the Modelica language design
is user interaction for efficient modeling of large, com-
plex and heterogeneous physical systems.

Models are usually decomposed in several hierar-
chical levels. On the bottom of hierarchy are submod-
els of basic physical phenomena which are most com-
monly stated as a set of (acausal) differential-algebraic
equations and it is thus most conveniently that these
equations can be entered directly (e.g., without a need
for any kind of manipulation or even transformation
to some other description formalism). On higher hi-
erarchical levels, model is described graphically by
schematics (i.e., object diagrams) and the obtained
scheme usually reflects the topology of the system.
Model representation in Modelica is thus understand-
able also to domain specialists unfamiliar with com-
puter simulation of dynamic system.

Modelica is object-oriented modeling language and
thus includes features such as inheritance and replace-
able models. This language features are necessary for
efficient implementation of model libraries [13], but
they increase implementation complexity and make
browsing sources of the components from libraries
more difficult. For example, component DynamicPipe
– a model of a straight pipe with distributed mass,
energy and momentum balances – from the Standard
Modelica Library consists of four base models and
three replaceable elements which are also models with
complex inheritance hierarchy. The description of
the pipe’s dynamics, equations of balances and ther-
modynamic state of the medium in the pipe, is split
among more than ten (partial) models to achieve effi-
cient component reuse and prevent code duplication.
This kind of model decomposition might not have a
physical meaning – it only addresses implementation
issues.

In practice, domain specialists usually already have



some calculations (e.g. in Excel) which they want to
use for verification of the model implemented in Mod-
elica and also for clarifying unexpected behavior of
(usually) much more detailed and complex model in
Modelica. So, a matching between calculations they
have and model in Modelica is desired. However,
modeling environments supporting Modelica currently
do not provide many tools that would facilitate inves-
tigating and exploring the model. Most of the com-
plex models are build up with use of different model
libraries and when the documentation of those libraries
do not suffice, especially when the submodels are
highly customized components (with replaceable sub-
components and modifications), it is necessary to look
under the hood of the used components. But due to
complicated implementation of library components, it
is undoable for most domain specialists.

Engineers use experience and intuition to determine
important parts of the model which have the high-
est impact on system’s dominant dynamics or model’s
simulation response in specific scenario. In an attempt
to diminish reliance on subjective factors such as ex-
perience, numerous modeling metrics and methodolo-
gies have been developed. They usually require strict
modeling formalisms and thus not much effort was put
into integrating them into Modelica environments.

2 Model order reduction and simpli-
fication techniques

Detailed models of complex systems are also as com-
plex and hard to understand as reality they model. The
interpretation of underlying equations or extraction of
an in-depth system understanding can get impossi-
ble even for relatively small systems [11]. Therefore,
symbolic analysis methods, most notably of electrical
circuits, incorporate various symbolic approximation
techniques which are used to simplify symbolic ex-
pression or schematic diagrams and also reduce order
(state-space dimension) of the model [10].

An important class of the model order reduction
and simplification methods when used in system anal-
ysis or for structural design is when they generate a
proper model, i.e., reduced model with the minimum
complexity required to meet the performance specifi-
cations and possessing physically meaningful parame-
ters and states [5].

A numerous mixed numerical-symbolic model or-
der reduction and simplification techniques have been
developed and successfully applied so far [10, 12, 4,

5]. They usually consist of running a series of simu-
lations, ranking the individual coordinates or elements
by the appropriate (quantitative) metrics and removing
those that fall below a certain threshold [2].

2.1 Equation-based simplification

All analytic models can be described by a system of
equations and even if some other modeling formalism
is used (e.g., block schemes, bond graphs, etc.), it is
possible to export the model as a system of equations.
However, model representation in a form consisting of
symbolic (algebraic) expressions is meaningful to user
only in certain situations, for example, use of transfer
functions in control design.

For equation-based simplification, variables of in-
terest must be selected and metrics used for ranking of
expressions’ terms is then selected as a numerical er-
ror with respect to an objective function given by the
variables of interest.

Simplification strategies include various algebraic
manipulations (e.g., substitution of a variable), where
no error is introduced into the simplified equations,
and modification of the equations that results in the ap-
proximate system (e.g., term deletion, linearization of
equations, etc.) which requires a numeric simulation
to determine the error caused by modification [14].

Simplification can have a global effect, i.e., affects
whole system of equations, when some variables of
the system are manipulated or local effect when only
single term of one equation is manipulated.

2.2 Structure-based simplification

Most of modern modeling tools provide a graphical
interface where models are represented by schematics.
Graphical descriptions of the models are based on var-
ious modeling formalisms, schematics can be a merely
graphical representation of algebraic expressions (e.g.,
block graphs) and symbolics comprising the schemat-
ics represent single or a group of algebraic operations
or they can provide additional information about the
system (e.g., information about topology of the sys-
tem). In the latter case, it is sensible to chose cus-
tomized simplification techniques, although it is possi-
ble to map models simplified by equation-based order
reduction and simplification techniques to a graphical
representation of the original model [12].

Because all physical systems have in common con-
servation of mass and energy, a widely used class
of metrics for order reduction of proper models in
physical-systems modeling are related to energy or



power [2]. Energy-based metrics require a model-
ing formalism where energy of the model’s compo-
nents is easily extracted, for example, bond graphs
[9, 5]. Bond-graph modeling is a form of object-
oriented physical systems modeling: elements can be
seen as object interacting with each others – interac-
tions are described by acausal bonds [1].

Among successfully applied energy-based tech-
niques for bond-graph simplification are ranking of el-
ements based on RMS power of bonds [9], ranking on
activity – amount of energy that flow in and out of the
element over the given time [5] and comparing the en-
ergy associated with each bond to those in neighboring
bonds and eliminating those with smallest relative en-
ergy [15]. Result of a model simplification by these
techniques is also a model described by bond graph.
Furthermore, all the energy-based metrics have some
physical meaning and can thus help with understand-
ing and addressing modeling issues.

3 Simplification of models in Model-
ica

According to authors knowledge, there is no model-
ing environment that provides tools for simplification
and order reduction of model implemented in Model-
ica directly. A Modelica model must be flatten and the
resulting DAE system is then exported to a designated
tools where model order reduction and simplification
is performed.

This approach is suitable for some applications, for
example, when reduced model is needed for control
design. In such cases, loss of information caused
by flattening is not problematic, because only close
matching of reduced and original model’s behavior is
required. However, in applications like model verifi-
cation and debugging or when model is used to gain
insight for system performance improvement, it is de-
sired that simplified model is also a valid Modelica
model with the same structure as the original (with
the same hierarchical decomposition and topology of
schematics).

4 Ranking elements of object dia-
gram

4.1 Choice of metrics

Object diagrams consist of connected symbols repre-
senting components (submodels). What kind of in-

teraction a connection defines is determined by type
of connectors (i.e., ports) the connected components
have. In Modelica is a type of connector very loosely
defined. In general, it is a list of variables with some
qualifications (e.g., causality, type of variable: inten-
sive – extensive, etc.), but it can also have a hierarchi-
cal structure [6].

Although a large number of different kind of
schematics can be modeled with appropriately defined
connectors, are the most important acausal connec-
tions for modeling physical interactions. Each (dy-
namic) interaction between physical systems results in
a energy exchange between the system, so it is very
intuitive to chose energy-based metrics for simplifica-
tion of physical systems models.

Modelica’s object diagrams, when modeling physi-
cal systems, share some similarities with bond graphs,
which are also a form of object-oriented acausal mod-
eling. Therefore it is easy to adapt most of bond-
graph simplification techniques to Modelica’s object
diagrams.

Connectors usually contains a pair of effort and flow
variable (however, their product is not necessarily an
energy flow like in bond graph formalisms), as can
be seen by inspecting Modelica Standard Library [7]
where elementary connector definitions for almost all
physical domains are gathered:

• Interaction between components in analog cir-
cuits (Modelica.electric) is determined by volt-
age v and current i, the latter is a flow variable,
and the power of the interaction is product of both
variables: p = v · i.

• Similar is connector in Modelica.Magnetic com-
posed of variables for magnetic potential differ-
ence Vm and magnetic flux Φ, an effort and flow
variable respectively. Power of the connection is
product of variables: p = Vm ·Φ.

• Connectors used for modeling of 1-D mechanics,
translational and rotational, consist of position s
and angle φ respectively, and force f and torque τ

respectively. However, product of connector’s ef-
fort and flow variable is no longer power. For de-
termination of the power of connection, displace-
ment variable has to be differentiated: p = d

dt s · f
and p = d

dt φ · τ for translational and rotational
mechanics respectively.

• In Modelica Multibody library, which deals with
3-D mechanics, are effort and flow variables no
longer scalars, they are 6-dimensional vectors,



so a state of a free-body (having 6 degree-of-
freedom) can be determined. Furthermore, due
to computational restrictions, implementation of
connector takes also into account a suitable selec-
tion of a frame of reference (forces, torques and
orientation are expressed in local, while position
is in global frame of reference). A definition of
the connector is the following:
c o n n e c t o r Frame

SI . P o s i t i o n r_0 [ 3 ] ;
Frames . O r i e n t a t i o n R ;
f low SI . Force f [ 3 ] ;
f low SI . Torque t [ 3 ] ;

end Frame ;

Position is determined with variable r_0, while
orientation R is a structure containing transfor-
mation matrix T from global to local frame of
reference and vector of angular velocities ω in
local frame of reference. Forces and torques are
given by vectors f and t respectively. Power of
the connection can be calculated by expression:
p = d

dt (T · ro) · f + ω · t, where again, there is a
need to differentiate position after transformation
to local frame.

• Connector for modeling heat transfer in 1-D con-
sists of effort variable temperature T and flow
variable for heat-flow rate Q f low. The energy
transfer is in this case equal to flow variable,
p = Q f low.

• Library Modelica.Fluid deals with modeling of
heat and mass transfer. The connector used
in library’s components which covers also mass
transfer is implemented as following:
c o n n e c t o r F l u i d P o r t

r e p l a c e a b l e package Medium =
Model ica . Media . I n t e r f a c e s . P a r t i a l M e d i u m ;

f low Medium . MassFlowRate m_flow ;
Medium . A b s o l u t e P r e s s u r e p ;
s t r e a m Medium . S p e c i f i c E n t h a l p y

h _ o u t f l o w ;
s t r e a m Medium . M a s s F r a c t i o n

X i _ o u t f l o w [ Medium . nXi ] ;
end F l u i d P o r t ;

Besides effort and flow variable, pressure p and
mass-flow rate m f low respectively, the connector
includes also additional information about prop-
erties of the substance which is being exchanged
in the interaction modeled by a connection of type
FluidPort: specific enthalpy h and composition
of substance (vector of mass fractions Xi if sub-
stance is a mixture). The thermodynamic state

mu

ms

Kt

Ks s

t

vs

vr

g

Figure 1: Scheme of car a suspension.

of the substance is uniquely determined by the
variables of connector and all the other (thermo-
dynamic) properties can be calculated by using
functions provided by package Medium which is
a parameter of the connector. However, thermal
diffusion is not covered by this connector (it is
neglected).

Energy flow associated with the connector is
composed of thermal, hydraulic and chemical
term and could be calculated as following [3]:
p = ṁ · s ·T + ṁ · p/ρ +∑ µi · Ṅi. Quantities spe-
cific entropy s, temperature T , density ρ , chem-
ical potential µi and molar flow Ṅi can be calcu-
lated from thermodynamical state equations pro-
vided by package Medium.

Although it is possible to calculate energy flow of
the connector from the variables of the connector, this
is not always possible to do as a post-processing the
simulation results. For example, derivative of the po-
sition or angle in connector of the library for 1-D me-
chanics may not be available if this variable is not cho-
sen for state variable. This implies instrumentation of
the model.

Most bond-graphs energy-based metrics, like [5],
require energy flow of the element. Fg. 1 illustrates
a scheme of a car suspension for one wheel. Corre-
sponding representation of a model with a bond graph
is depicted in Fg. 2. In Fg. 2 can be seen that each
element (e.g., tire stiffness) is represented with a bond
which have an element symbol on one end and with
another it is connected to the 1-junction. A model
of the car suspension from Fg. 1 build from Modelica
Standard Library’s components is shown in Fg. 3. Be-
cause bond-graph and Modelica’s object diagram pre-
serve system topology, there are some analogies be-
tween them. A connection node in Modelica, when
two or more connectors are connected together), is
equivalent to 0-junction in bond-graph representation



Figure 2: Bond graph of a car suspension

Figure 3: Car-suspension model represented by a
Modelica object diagram.

– the effort variables of connected connectors are the
same and the flow variables sum to zero. According
to the analogy, each Modelica’s component in object
diagram should be analogous to 1-junction – effort
variables of the component’s connectors should sum
to zero. However, this is not the case in Fg. 3 where
effort variable defined in connectors is absolute posi-
tion. Nevertheless, energy conservation law implies
that energy flow of all component’s connectors and
change of energy stored, added or removed by com-
ponent must sum to zero. Therefore, the energy flow
which corresponds to energy flow of bond represent-

ing the element can be in Modelica object diagrams
calculated as sum of energy flows of the component’s
connectors. For example, activity A of a component,
weighting factor used in metrics proposed by [5], is
thus calculated for Modelica components as follow-
ing:

A =
∫ t2

t1
|

N−1

∑
i=0
−pi(t)| ·dt (1)

In Eq. 1, pi(t) designates power flow into i-th connec-
tor, N is the number of connectors in component and
[t1,t2] is the time window of observation.

4.2 Model instrumentation

In order to assure that all the necessary data for se-
lected (energy-based) metrics evaluation are provided
in the simulation results, model must be instrumented,
i.e., additional equations must be inserted into the
model.

It is possible to insert equations for weighting fac-
tors (e.g., Eq. 1) directly. However, this introduces
many new equations and states into the simulation
model and can have a very negative impact on sim-
ulation’s duration and also on numerical stability.
This can be problematic especially with large models,
where the use of model approximation methods is the
most sensible.

Therefore we decided to use the least instrumenta-
tion possible and do most of calculations of weight-
ing factors as a post-processing of simulation results.
Model instrumentation was implemented in Open-
Modelica’s shell [8]. Before model can be simulated, it
must be loaded into the environment together with all
the libraries it requires. Upon loading, abstract syntax
tree (AST) of the model is generated and saved into the
environment. So, instrumentation was implemented as
a separate function which traverses the AST in the en-
vironment and for each connection encountered inserts
an equation for energy-flow calculation. What kind of
equation needs to be inserted is determined by inspect-
ing the type of connector used in the connection equa-
tion. For this purpose, a special library of components
is provided to the instrumentation function. Each com-
ponent of the library have as an annotation provided
a fully-qualified path to the connector-type definition
of which equation for an energy-flow calculation pro-
vides. If there is no corresponding component found
in the library for the connection’s connector-type, that
connection is skipped.

Besides instrumentation of the model, connection
graphs for each hierarchical level of the models are



added to the environment.

After a model is instrumented, it can be simulated
in the usual way (with command simulate()).

4.3 Ranking and presentation of results

Ranking of components is performed as post-
processing of simulation results. This enables possi-
bility of switching ranking metrics without repeating
(possibly time-consuming) instrumentation and simu-
lation. Furthermore, ranking of components which are
not of current interest can be avoided.

In our current implementation, activity-metrics
(Eq. 1) is used for ranking. Each hierarchical level
is considered separately. To determine activity of the
component, a connection graph of the object-diagram
on given hierarchical level is taken from environment
(where it was put by instrumentation function) and en-
ergy flows of component’s connections are extracted
from it. The absolute sum of connection’s energy
flows (as determined by Eq. 1) are numerically inte-
grated by a quadrature form. However, because inte-
gration is done as post-processing, there is a significant
loss of accuracy. Quadrature formulas have a much
higher truncation-error then solvers used for simula-
tion of the model. Furthermore, such integration is af-
fected by the chosen communication interval. Never-
theless, because accuracy of weighting factors is not of
critical importance, use of quadrature formulas suffice
in most cases.

The results of ranking are currently provided only
in printed form (in a tableau), because there was no
graphical interface suitable for adaptation available.
Simplification of the model based on obtained ranking
is not implemented yet.

Element activity [J] relative [%] accumulated [%]
gravityForce_s 2,270.06 37.06 37.06
spring_s 1,763.33 28.79 65.85
ground 795.02 12.98 78.82
mass_s 787.65 12.86 91.68
damper_s 198.82 3.25 94.93
spring_t 192.57 3.14 98.07
gravityForce_t 92.98 1.52 99.59
mass_t 24.53 0.40 99.99
damper_t 0.53 0.01 100.00
displacement_s 0.00 0.00 100.00
displacement_t 0.00 0.00 100.00

Table 1: Ranking of components when model from
Fg. 3 is given input shown in Fg. 4.
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Figure 4: A car hits a smooth curb: low-frequency
excitation signal is given as an input to model on Fg.3.
Also a response – displacement of a unsprung (mass_t)
and sprung mass (mass_s) is depicted.

Figure 5: A car hits a sharp curb: step signal is given
as an input to model on Fg.3. Also a response – dis-
placement of a unsprung (mass_t) and sprung mass
(mass_s) is depicted.

Element activity [J] relative [%] accumulated [%]
mass_t 528,914.61 43.25 43.25
spring_t 481,340.66 39.36 82.61
damper_s 115,233.47 9.42 92.03
spring_s 49,128.08 4.02 96.05
damper_t 32,039.56 2.62 98.67
mass_s 9,124.75 0.75 99.42
gravityForce_s 5,916.76 0.48 99.90
gravityForce_t 1,196.47 0.10 100.00
ground 0.00 0.00 100.00
displacement_s 0.00 0.00 100.00
displacement_t 0.00 0.00 100.00

Table 2: Response of components when model from
Fg. 3 is given a step signal as input.



4.4 Example

A model from Fg. 3 is excited by two different sig-
nals, depicted in Fg. 4 and Fg. 5 respectively. For each
experiment, components of the model are ranked with
activity metrics (Fg. 1) and results are shown in Ta-
ble 1 and 2 respectively.

As it can be seen, both rankings are very different,
but so are the excitation signals. In the first example,
the highest ranked components belong to the part of
the model with slow dynamics, while in the second ex-
ample is the part with faster dynamics much more ex-
cited and therefore also highly ranked. However, in the
second example, simulation’s communication interval
is too large and thus there is a large error in weighting
factors estimation.

5 Conclusion

Presentation of a model to user is an important aspect
of modeling environments that helps with model un-
derstanding and maintenance. However, many Mod-
elica’s language features (e.g., inheritance) are im-
portant for effective implementation and to prevent
code duplication, but may worsen the clarity of the
model implementation. Furthermore, detailed mod-
els of complex systems are as hard to understand as
reality. Therefore, we believe that there should be in-
tegrated a tool into the modeling environment which
would help users, non-modeling specialist, to better
understanding the model and provide effective means
for explaining the model behavior and model verifi-
cation (and debugging). As it proposed in the pa-
per, model order reduction and simplification tech-
niques (e.g., ranking metrics used by these techniques)
can be used for this purpose. It is important that the
results are presented in the same form as the origi-
nal model. Modelica’s models are represented graph-
ically, by object diagrams, or as a set of acausal
differential-algebraic equations. Therefore, model or-
der reduction and simplification techniques for both
representation must be used. There are already many
methods for simplifying (ranking) models represented
with DAE system. We also showed that method for
simplifying bond graphs (graphical modeling formal-
ism) can be adapted to work with Modelica’s object
diagrams.
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