

An Open Source Modelica Graphic Editor Integrated with Electronic
Notebooks and Interactive Simulation

Syed Adeel Asghar1, Sonia Tariq1, Mohsen Torabzadeh-Tari1, Peter Fritzson1, Adrian Pop1, Martin
Sjölund1, Parham Vasaiely2, Wladimir Schamai2

1PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
2EADS Innovation Works, Engineering & Architecture, 21129 Hamburg, Germany

adeel.asghar@liu.se, x10sonta@ida.liu.se, {mohsen.torabzadeh-
tari,peter.fritzson,adrian.pop,martin.sjolund}@liu.se,

Parham.Vasaiely@gmx.de, Wladimir.schamai@eads.net

Abstract
This paper describes the first open source Modelica
graphic editor which is integrated with interactive elec-
tronic notebooks and online interactive simulation.

The work is motivated by the need for easy-to-use
graphic editing of Modelica models using OpenMode-
lica, as well as needs in teaching where the student
should be able to interactively modify and simulate
models in an electronic book. Models can be both tex-
tual and graphical. The interactive online simulation
makes the simulation respond in real-time to model
changes, which is useful in a number of contexts in-
cluding immediate feedback to students.

Keywords: Graphic editing, notebook, teaching, inter-
active, Modelica, modeling, simulation, online

1 Introduction
OMEdit, the OpenModelica Connection Editor, is the
new Graphical User Interface for graphic model editing
in OpenModelica. It is implemented in C++ using the
Qt 4.7 graphical user interface library, and supports the
Modelica Standard Library version 3.1 that comes with
the OpenModelica installation.

OMEdit provides a user friendly environment for:

• Modeling – Easy Modelica model creation.
• Pre-defined Models – Browsing the Modelica Stan-

dard library to access the provided models.
• User defined models – Users can create their own

models for immediate usage and later refinement
and reuse.

• Component Interfaces – Smart connection editing
for drawing and editing connections between model
interfaces.

• Simulation subsystem – Subsystem for running si-
mulations (not online) and specifying simulation pa-
rameters start and stop time, etc.

• Online Simulation – Online interactive simulation
where the simulation responds in real-time to user
input and changes to parameters.

• Plotting – Interface to plot variables from simulated
models.

• OMNotebook integration – being able to open a
graphical connection diagram in an electronic note-
book, edit it, and paste it back.

OMEdit uses the OmniORB CORBA implementation
to communicate with the OpenModelica Compiler.

Modelica 3.2 Graphical Annotations are interpreted
for drawing Modelica Standard Library component
models and user defined models. As a result, the inte-
roperability with other Modelica tool vendors becomes
easier as the Modelica icon and diagrams defined in
other tools supporting the Modelica 3.1 or Modelica 3.2
standards are easily handled in OMEdit. The annota-
tions are also used for displaying Modelica documenta-
tion in OMEdit.

1.1 Structure of the Paper

Section 3 describes the usage of OMEdit and also de-
monstrates how a DCmotor model is created using
OMEdit. Section 4 explains the OMEdit communica-
tion process with OMC through the CORBA interface.
How user defined and Modelica component model
shapes are created through annotations is discussed in
section 5.

Section 6 elaborates the interactive simulation me-
chanism that is still under development in OMEdit.
Section 7 briefly describes how OMEdit can interact
with OMNotebook and how users can launch electronic

notebooks in OMEdit. Moreover, Section 8 presents
related work and in the end, Section 9 suggests some
future work.

Figure 1. OMEdit High-level View.

2 Requirements and Motivation
This work is motivated by the need for easy-to-use
graphic editing of Modelica models using OpenMode-
lica, as well as needs in teaching where the student
should be able to interactively modify and simulate
textual and graphical models in an electronic notebook.

The interactive online simulation makes the simula-
tion respond in real-time to model changes, which is
useful in a number of contexts, especially teaching
where immediate feedback to students enhances the
effectiveness of learning.

A recently developed interactive learning material
called DrControl is depicted in Figure 2.

Figure 2. DrControl for teaching control theory with
Modelica.

DrControl is a new active electronic notebook course
material based on OMNotebook for teaching control
theory and modeling with Modelica, including graphic
connection diagrams supported by OMEdit. It contains
explanations about basic concepts of control theory

along with Modelica exercises. Observer models, Kal-
man filters, and linearization of non-linear problems are
some of the topics in the course used in control of a
pendulum, a DC motor, and a tank system model
among others.

3 Using OMEdit
This section gives a brief introduction about how to use
OMEdit and also demonstrates how to create a DCmo-
tor model.

3.1 Introductory Model in OMEdit

Since Modelica is an equation-based language and
OMEdit is a connection editor, we will for a small in-
troductory model demonstration in OMEdit show how
a DCmotor model is created in OMEdit.

3.1.1 Creating a new file

Creating a new file/model in OMEdit is rather
straightforward. In OMEdit the new file can be of type
model, class, connector, record, block, function
or package. The user can create any of the model types
mentioned above by selecting File > New from the
menu. Alternatively, you can also click on the drop
down button beside new icon shown in the toolbar
right below the File menu. See Figure 3.

In this introductory example we will create a new
model named DCmotor. By default the newly created
model will open up in the tabbed view of OMEdit, also
called Designer Window, and become visible.

Figure 3. Creating a new file/model.

All the models are created in the OMC global scope
unless the user specifies the parent package for it.

3.1.2 Adding Component Models

The Modelica Standard Library is loaded automatically
and is available in the left dock window. The library is
retrieved through the loadModel(Modelica) API
function and is loaded into the OMC symbol table and
workspace after the command is completed.

Instances of the component models available in the
Modelica Standard Library can be added to the current-
ly edited model by doing a drag and drop from the Li-
brary Window. Navigate to the component model in
the library tree, click on it, drag it to the model you are
building while pressing the mouse left button, and drop
the component where you want to place it in the model.

For this example we will add four components as
instances of the models Ground, Resistor, Inductor
and EMF from the Modelica.Electrical

.Analog.Basic package, an instance of the model
SignalVoltage from the Modelica.Electrical.

Analog.Sources package, one instance of the model
Inertia from the Modelica.Mechanics.Rot-

ational.Components package and one last instance
of the model Step from the Modeli-

ca.Blocks.Sources package.

3.1.3 Making Connections

In order to connect one component model to another
the user simply clicks on any of the ports. Then it will
start displaying a connection line. Then move the
mouse to the component where you want to finish the
connection and click on the component port where the
connection should end. You do not need to hold the
mouse left button down for drawing connections.

In order to have a functioning DCmotor model, con-
nect the Resistor to the Inductor and the Signal-
Voltage, EMF to Inductor and Inertia, Ground to
SignalVoltage and EMF, and finally Step to Sig-
nalVoltage. Check Figure 4 to see how the DCmotor
model looks like after connections.

Figure 4. DCmotor model after connections.

3.1.4 Simulating the model

OpenModelica models are simulated using the simu-
late command of OMC. The simulate command has
following parameters;

• Simulation Interval
• Start Time
• Stop Time

• Output Interval
• Number of Intervals
• Output Interval

• Integration
• Method
• Tolerance
• Fixed Step Size

The OpenModelica Connection Editor provides an easy
interface for simulation of models and allows the user
to fill in the parameters before starting the simulation
process.

The OMEdit Simulation dialog can be launched
either from Simulation > Simulate or by clicking
the simulate icon from the toolbar. Once the user
clicks on simulate! button, OMEdit starts the simula-
tion process, at the end of the simulation process the
Plot Variables window, useful for plotting, will ap-
pear at the right side. Figure 5 shows the simulation
dialog.

Figure 5. Simulation Dialog.

3.1.5 Plotting Variables from Simulated Models

The instance variables that are candidates for plotting
are shown in the right dock window. This window is
automatically launched once the user simulates the
model; the user can also launch this window manually
either from Simulation > Plot Variables or by
clicking on the plot icon from toolbar. It contains the
list of variables that are possible to use in an OpenMo-
delica plot. The plot variables window contains a tree
structure of variables; there is a checkbox beside each
variable. The user can launch the plotted graph window
by clicking the checkbox.

Figure 6 shows the complete DCmotor model along
with the list of plot variables and an example plot win-
dow.

Figure 6. Plotted variables.

4 Communication with OMC
For graphical modeling OMEdit needs to draw
shapes/component models that are defined by Modelica
annotations. In order to obtain the Modelica annota-
tions OMEdit must be able to communicate with the
OpenModelica Compiler through the CORBA inter-
face.

4.1 OMC CORBA Interface

OMC is a short name for the OpenModelica Compiler.
There are two methods to invoke it:

• As a whole program, called at the operating-system
level, e.g. as a command.

• As a server, called via a CORBA client-server inter-
face from client applications.

OMEdit uses the second method to invoke the Open-
Modelica Compiler/Interpreter OMC, since this allows
interactive access and querying of the models, needed
for interactive graphic editing.

4.2 The CORBA Client Server Architecture

The Figure 7 below describes the design of the
OpenModelica client server architecture. OMEdit plays
the role of client in this architecture. It sends and
receives commands through the CORBA interface. The
messages and expressions from the CORBA interface
to OMC are divided into two groups. The first group
contains the commands which are evaluated by the
Ceval module and the second group consists of
expressions which are handled by the Interactive
module.

Figure 7. Client-Server interconnection structure of the
compiler/interpreter main program and some interactive
tool interfaces.

Messages via the CORBA interface are of two kinds.
The first group consists of expressions or user com-
mands which are evaluated by the Ceval module. The
second group consists of declarations of classes, va-
riables, etc., assignments, and client-server API calls
that are handled via the Interactive module, which
also stores information about interactively de-
clared/assigned items at the top-level in an environment
[1].

4.3 Invoking OMC through CORBA

In order to communicate with OMC through CORBA
you need to start omc.exe as a process with special
parameters passed to it. The OMC binary executable
file is located in $OPENMODELICAHOME/bin. OMEdit
invokes OMC with a special CORBA flag
+d=interactiveCorba telling OMC to start with the
interactive CORBA communication environment. The
complete command will look like this:
 omc.exe +d=interactiveCorba.

OMEdit starts a new OMC process for its each in-
stance. Only one OMC is linked to each instance of
OMEdit. However, for some special tasks a new OMC
is used and is removed as soon as the task is completed.

OMEdit also passes one special argument flag +c to
OMC which is used to specify the Interoperable Object
Reference (IOR) file name. By default the IOR file is
created in the temp directory. OMEdit uses the applica-
tion session identity number along with the current
timestamp to ensure that each instance of OMEdit gets
a new OMC.

When OMC is started with the +d= interactive-
Corba flag, it will create a file named openmodeli-
ca.objid (name depends on the +c argument flag val-
ue of OMC) in the temp directory of operating system.
This file contains the CORBA IOR.

4.4 What to do with the CORBA IOR File?

The IOR File contains the CORBA object reference as
a string. The CORBA object is created by reading the
string written in the IOR File. Here is an example with
Qt C++ source code for starting OMC from OMedit
and creating a CORBA object:
// create a unique file name
QString fileIdentifier;fileIdentifier =
qApp-
>sessionId().append(QTime::currentTime().t
oString().remove(":"));

QStringList parameters;
parameters << QString("+c=").append(this-
>mName).append(fileIdentifier) <<
QString("+d=interactiveCorba");

// start the OMC process
QProcess *omcProcess = new QProcess();
omcProcess->start(omcPath, parameters);

// read the file created by omc.exe
QFile objectRefFile (path_to_IOR_File);
int argc = 2;
static const char *argv[] = { "-
ORBgiopMaxMsgSize", "10485760" };
CORBA::ORB_var orb = CORBA::ORB_init(argc,
(char **)argv);
objectRefFile.open(QIODevice::ReadOnly);
char buf[1024];

// read the IOR string
objectRefFile.readLine(buf, sizeof(buf)
);
QString uri((const char*)buf);

// create CORBA object
CORBA::Object_var obj = orb-
>string_to_object(uri.trimmed().toLatin1()
);

4.5 OMC API Enhancements

During the development of OMEdit several issues with
the OMC Application Programming Interface (API)
were discovered:

• Annotations for some models could not be retrieved
via getIconAnnotation, getDiagramAnnotation
or getDocumentationAnnotation.

• addConnection and updateComponent did not
work correctly.

• renameComponent was very slow.
• The package Modelica.UsersGuide does not have

any icon/diagram annotation but it has a non-
standard Dymola annotation.

For example getIconAnnotation(Modelica.Elec-
trical.Analog.Resistor) did not work because the
Resistor model had component references inside the
annotations. This problem was solved by symbolically
elaborating (instantiating) the Resistor model, con-

stant evaluating the useHeatPort parameter, and then
elaborating the annotation record with this constant
value.

Using constant evaluated parameters from elabo-
rated model does not work for annotations that contain
DynamicSelect and additional support for such anno-
tations is needed. Unfortunately the DynamicSelect
annotation creates problems for Modelica software that
uses a client-server paradigm since it connects an anno-
tation with a simulation, not with the actual model.
However, DynamicSelect can still be handled by re-
turning the entire expression to the client (here OME-
dit) which could link a simulation variable to the anno-
tation.

Retrieving the documentation annotation for MSL
3.1 did not work at first because these annotations hade
been moved (MSL 2.x had no such requirements) to the
end of the class definitions (typically in an equation
section) and OMC only searched the public sections.
This was solved easily in OMC by searching the entire
model for the documentation annotation.

To make it easier to find which annotations cannot
be retrieved correctly OMC was changed to return the
exact annotation that was present in the model. Using
this feature the problematic parts of the communication
between OMEdit and OMC was debugged.

Updating components and adding connections to
classes had small issues that were fixed to support
OMEdit.

The package Modelica.UsersGuide and several
others do not have any icon/diagram annotation. Dis-
playing these packages in the MSL 3.1 browsing tree
did not look nice. However, we observed that these
packages has a non-standard Dymola specific annota-
tion which is: __Dymola_DocumentationClass =

true. In order to retrieve this annotation in OMEdit the
OMC API had to be extended with a new function:
getNamedAnnotation(Modelica.UsersGuide) =>

true. Now these packages can display a predefined
icon in the tree browser.

To automatically test which component models
have problems a script was written in OMEdit that
walks the entire MSL 3.1 and calls OMC API functions
on these models to see if the retrieved information was
correct or not. A list with problematic models was
built. Subsequently these issues were solved one-by-
one.

The function to rename a component, renameCom-
ponent API function, was extremely slow when MSL
3.1 was loaded. This occurred because OMC had to go
through all models and components and do a renaming
refactoring. To resolve this and provide a faster func-
tionality, we added a new API renameComponentIn-

Class that only renames the component locally in the
model that is built using OMEdit and not in any other.

5 Annotations
Modelica annotations are used for storing auxiliary in-
formation about a model such as graphics, documenta-
tion or versioning etc. [2]. Once OMEdit is connected
with OMC it can request the annotations. OMEdit uses
three types of annotations;

• Annotations for Graphical Objects.
• Annotations for Connections.
• Annotations for Documentation.

5.1 Shapes/Component Models Annotations

All the shapes drawn in OMEdit are based on Modelica
Annotations version 3.2. Graphical Annotations consist
of two abstraction layers: the icon layer and the dia-
gram layer. The icon layer contains the icon representa-
tion of a component and the diagram layer shows the
inheritance hierarchy, connections, and inherited com-
ponent models.

For example, a graphical icon representation of a
Ground component model will look like this:
{-100.0,-
100.0,100.0,100.0,true,0.1,2.0,2.0,{Line(t
rue,{0.0,0.0},0,{{-
60,50},{60,50}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{-
40,30},{40,30}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{-
20,10},{20,10}},{0,0,255},LinePattern.Soli
d,0.25,{Arrow.None,Arrow.None},3,Smooth.No
ne),Line(true,{0.0,0.0},0,{{0,90},{0,50}},
{0,0,255},LinePattern.Solid,0.25,{Arrow.No
ne,Arrow.None},3,Smooth.None),Text(true,{0
.0,0.0},0,{0,0,255},{0,0,0},LinePattern.So
lid,FillPattern.None,0.25,{{-144,-
19},{156,-
59}},"%name",0,TextAlignment.Center)}}

This graphical representation of the Ground model is
parsed by OMEdit for drawing this component model.
The icon annotation is retrieved from OMC through the
getIconAnnotation API command. Each graphical
object is built up using the primitive graphical types;
Line, Polygon, Rectangle, Ellipse, Text and Bit-
map [2].

The primitive graphical types in OMEdit are han-
dled through the QGraphicsItem class of Qt. A Sha-
peAnnotation class was created which is derived from
QGraphicsItem and QObject. This class is an abstract
class which contains classes of all primitive graphical
elements.

Figure 8. Classes hierarchy for predefined graphical
elements.

5.2 Connection Annotation

The connection annotation defines the graphical repre-
sentation of a connection between two component
models. An example of connection annotation string is:
connect (a.x, b.x)
annotation(Line(points={{-25,30}, {10,30},
{10, -20}, {40,-20}}));

The connection annotation is composed of the primitive
graphical type Line. The points of the line define the
connection line co-ordinates between two connecting
component models.

OMEdit creates an object of Connector class for
each connection. Each Connector contains instances
of ConnectorLine depending on the number of points
in a connection. The Connector class is derived from
QGraphicsWidget class which is container class for
graphical objects. The ConnectorLine class is derived
from QGraphicsLineItem which represents a single
line. If we have n points in a connection annotation
then we have n-1 instances of ConnectorLine. In
short n number of points creates n-1 lines. The follow-
ing shows the implementation of connection annotation
in OMEdit.

Figure 9. Implementation of connection annotation.

5.3 Documentation Annotation

The documentation annotation is used for textual de-
scriptions of models. It is written as follows:
documentation_annotation:

annotation"(" Documentation "(" "info" "="
STRING

["," "revisions" "=" STRING] ")" ")"

OMEdit requests OMC for the documentation of a spe-
cific component/library through the getDocumenta-
tion command and OMC returns the info annotation
contained inside the documentation annotation which is
a string. The tags <HTML> and </HTML> define the start
and end of the string.

The QWebView class of Qt is used for displaying the
HTML string of documentation annotation. The HTML
string contains four types of links:

• Hyperlinks – Used to navigate to external websites.
• Image Links – Used to reference the local image

files.
• Modelica Links – Used for linking to other compo-

nent models.
• Mailto Links – Used to display email addresses that

can be used for future contacts.

QWebView has built-in support for images so we didn’t
have to handle that. We just set the proper base path
where all the images were located. However, for hyper-
links and mailto links we used the QDesktopServices
class. This class uses the default system browser in case
of hyperlink and default email client in case of mailto
link. The Modelica links are special links which starts
with Modelica:// and reference to some component
model or a package. Figure 10 shows the implementa-
tion of documentation annotation in OMEdit.

Figure 10. Implementation of documentation annotation.

6 Interactive Simulation
In order to offer a user-interactive and time synchron-
ous simulation, OpenModelica has an additional sub-
system to fulfill general requirements on such simula-
tions, OpenModelica Interactive (OMI), shown in Fig-

ure 11. With OMI the user will be able to stimulate the
system and interacting with it at runtime.

After creating and elaborating a Modelica model it
is possible to simulate the model with OpenModelica.
The outcome of calling the simulate or buildModel
operation from the interactive session handler, is an
executable, standalone C/C++ program generated from
the internal simulation runtime code and the generated
C/C++ model code by OMC (in this case model.cpp).

Executable Model

OMC Simulation
Runtime Library
(sim_runtime.cpp…)

OMC Generated
Code

(model.cpp…)

This executable contains the full Modelica model trans-
lated to C/C++ code based on all required equations,
conditions and including different solvers. It offers both
a non-interactive as well as an interactive simulation
facility.

Since version 1.5.0 OpenModelica has an additional
subsystem in order to offer a user-interactive and time
synchronous simulation. This module is part of the si-
mulation runtime core and is called “OpenModelica
Interactive” (OMI). As mentioned above OMI will re-
sult in an executable simulation application, such as the
non-interactive simulation. The following are some
general functionalities of an interactive simulation run-
time:

• The user will be able to stimulate the system during
a running system simulation and to observe its reac-
tion immediately.

• The simulation runtime behavior will be controlla-
ble and adaptable to offer an interaction with a user.

• A user will receive simulation results online during
a simulation synchronous to real time, neglecting
network process time and some other factors like
scheduling of processes from the operation system.

• In order to offer a stable simulation, a runtime func-
tion will inform the user interface of errors and con-
sequential simulation aborts.

• Simulation results will not under-run or exceed a to-
lerance compared to a thoroughly reliable value, for
a correct simulation.

• Communication between a simulation runtime and a
user interface will use a well defined interface and
be based on common technology, in this case net-
work communication.

In this case the simulate operation cannot be used.
Instead the buildModel operation is needed.

To start an interactive simulation there is a need for
more information, such as network configurations.

An important modification/addition to the semantics
of the Modelica language during interactive simulation
is the fact that parameters are changeable while simu-
lating interactively using OMI. All properties using the
prefix parameter can be changed during an interactive
simulation. The fully qualified name is used as a unique
identifier, so a parameter value can be found and
changed regardless of its hierarchical position in the
model. For more information see the OpenModelica
System Documentation [1].

Figure 11. OpenModelica interactive system architecture
overview.

7 Interaction with OMNotebook
OMEdit provides an environment where connection
diagrams can be integrated with electronic interactive
notebook. The idea is that the user performs the model-
ing in the connection editor and can subsequently ex-
port his/her models to an electronic notebook.

Alternately, the model in an electronic notebook is
just an image. The model including its equations, algo-
rithms, annotations etc. are hidden behind the picture.
Thus, OMEdit is integrated with the OMNotebook tool
[7], allowing users to click on the image and launch the
model in connection editor where user can manage the
connections, add/remove component models etc.

Figure 12 shows an electronic notebook with a
DCmotor model as an image. When the user double
clicks on the image, an OMEdit editing view is popped
up, allowing both textual and graphical editing.

Figure 12. OMEdit integrated with OMNotebook used in
a teaching material with exercises.

8 Related Work
There is previously one open source graphical editor
available for OpenModelica:

• SimForge – Graphical and Textual Open Source
Model Editor by Politecnico di Milano [3].

We have tried this editor for teaching, but found that
the current implementation is too slow, not stable
enough, and does not integrate with OMNotebook and
interactive simulation.

There are also several commercial tools available
for graphical modeling, e.g.:

• Dymola – Developed by Dynasim. Dymola, Dy-
namic Modeling Laboratory, is a complete tool for
modeling and simulation of integrated and complex
systems for use within automotive, aerospace, ro-
botics, process and other applications [4].

• MathModelica – Developed by MathCore Engineer-
ing AB. MathModelica is a powerful, flexible and
extensible system for multi-engineering modeling
and simulation [5].

• MapleSim – High Performance Physical Modeling
and Simulation from Maplesoft [6].

These are professional products that work well, but are
not freely available, and are not open source. Also, they
are typically not integrated with electronic books. An
earlier version of MathModelica was integrated with
the Mathematica electronic book, but did not provide
interactive online simulation. The electronic notebook
from Maplesoft is Maple-based and is pure textual. Al-
so the Modelica language support is lacking in this tool.

9 Future Work
The first version of OMEdit is part of the OpenModeli-
ca 1.6 release. The version integrating OMEdit and
Interactive simulation with OMNotebook will be avail-
able very soon, probably in the 1.6.1 release.

Moreover, somewhat improved 2D plotting is cur-
rently on the way. Future enhancements on the wish list
include improved 3D graphic animation and support for
displaying inheritance dependencies and sources of
inherited equations and declarations.

10 Acknowledgements
This work has been supported by EU project Lila and
Vinnova in the ITEA2 OPENPROD project. The Open
Source Modelica Consortium supports the OpenMode-
lica work.

References
[1] Adeel Asghar and Sonia Tariq. Design and Im-

plementation of a User Friendly OpenModelica
Connection Editor, master thesis LIU-IDA/LITH-
EX-A-10/047-SE, Linköping University, Sweden,
2010.

[2] Open Source Modelica Consortium. OpenMode-
lica System Documentation Version 1.6, Novem-
ber 2010. http://www.openmodelica.org

[3] Modelica Association. The Modelica Language
Specification Version 3.2, March 24th 2010.
http://www.modelica.org. Modelica Association.
Modelica Standard Library 3.1. Aug. 2009.
http://www.modelica.org.

[4] SimForge. http://trac.ws.dei.polimi.it/simforge/.

[5] Dymola. Dynamic modeling tool,
http://www.dynasim.se.

[6] MathModelica.
http://www.mathcore.com/products/mathmodelic
a/.

[7] Peter Fritzson, Johan Gunnarsson, Mats Jirstrand.
MathModelica - An Extensible Modeling and Si-
mulation Environment with Integrated Graphics
and Literate Programming. In Proceedings of the
2nd International Modelica Conference, March
18-19, 2002, Munich, Germany.

[8] Anders Fernström, Ingemar Axelsson, Peter
Fritzson, Anders Sandholm, Adrian Pop. OMNo-
tebook – Interactive WYSIWYG Book Software
for Teaching Programming. In Proc. of the Work-
shop on Developing Computer Science Education
– How Can It Be Done? Linköping University,
Dept. Computer & Inf. Science, Linköping, Swe-
den, March 10, 2006.

http://ww.ida.liu.se/projects/OpenModelica�
http://www.modelica.org/�
http://www.modelica.org/�
http://trac.ws.dei.polimi.it/simforge/�
http://www.dynasim.se/�
http://www.mathcore.com/products/mathmodelica/�
http://www.mathcore.com/products/mathmodelica/�

	1 Introduction
	1.1 Structure of the Paper

	2 Requirements and Motivation
	3 Using OMEdit
	3.1 Introductory Model in OMEdit
	3.1.1 Creating a new file
	3.1.2 Adding Component Models
	3.1.3 Making Connections
	3.1.4 Simulating the model
	3.1.5 Plotting Variables from Simulated Models

	4 Communication with OMC
	4.1 OMC CORBA Interface
	4.2 The CORBA Client Server Architecture
	4.3 Invoking OMC through CORBA
	4.4 What to do with the CORBA IOR File?
	4.5 OMC API Enhancements

	5 Annotations
	5.1 Shapes/Component Models Annotations
	5.2 Connection Annotation
	5.3 Documentation Annotation

	6 Interactive Simulation
	7 Interaction with OMNotebook
	8 Related Work
	9 Future Work
	10 Acknowledgements

