

From Physical Modeling to Real-Time Simulation : Feed back on the
use of Modelica in the engine control development toolchain

Zakia Benjelloun-Touimi�; Mongi Ben Gaid�; Julien Bohbot�; Alain Dutoya�;

Hassan Hadj-Amor�; Philippe Moulin�; Houssem Saafi�; Nicolas Pernet�

�IFP Energies nouvelles

1 & 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France

�INCKA SA
85 avenue Pierre Grenier, 92100 BOULOGNE-BILLANCOURT

� Ecole Nationale d'Ingénieurs de Sousse
 Technopôle de Sousse, 4054 Sousse, Tunisie

Abstract

This article provides feedback from using Modelica
in the "System Modelling" area, involving modelling
(behavioural and dynamic modelling), direct simula-
tions, control and real-time applications.
The described work was undertaken within three
Europeans projects: Eurosyslib, Modelisar and Open
Prod.
Our aims are to attest Modelica language in an over-
all model of a vehicle consisting of vehicle dynam-
ics, combustion engine, transmission, drive line,
brakes and control systems.
ModEngine is a complete IFPEN1 library, resulting
from our participation in those European projects. It
allows the modelling of a complete engine with die-
sel and gasoline combustion models. It may be inter-
faced with control algorithms written in Simulink
thanks to the new Functional Mock-up Interface
specification from Modelisar project.
Both versions under commercial software Dymola
and free one OpenModelica are available.
Feedback will concerns also problems encountered
and advantages in use Dymola and OpenModelica
platforms.

Keywords: Control, Eurosyslib, FMI, Library,
Modelica; Modelisar; ModEngine, Modelisation,
Openprod, Simulation, Real-time.

1 IFPEN : IFP Energies nouvelles, new name of IFP

1 Introduction

The use of the Modelica � �language �[19] for hierar-
chical physical systems modelling is booming thanks
to an international effort, but mainly because it meets
what engineers and researcher expect for their devel-
opment today.
In this paper we propose to provide a feedback about
our experience in using Modelica for an industrial
application in European projects (Eurosyslib [23],
Modelisar [24], and OpenProd [25]): the develop-
ment of control strategies for automotive engines. In
this field, IFPEN [22] has promoted an approach
where simulation tools play a crucial role at the dif-
ferent stages of the development process. This ap-
proach has been described in various publications. It
utilizes the modelling library IFP-Engine developed
in C language, commercially available under the
LMS Imagine.Lab AMESim [26] environment.
The different stages of the development process and
the associated needs for simulation are the following:
1. System understanding: a detailed model of the

system is needed, including the representation of
all the physical phenomena. The physical accu-
racy is important.

2. Control strategy development: the focus is on the
control part, the system model is not modified.
However, it is coupled with the control strate-
gies, executed in Simulink. The execution plat-
form is important.

3. Control validation: the model must be compiled
and executed in an environment that is represen-
tative of real-time. The ability to compile and
export the model is important.

4. System integration: the interactions between the
engine and the other parts of the vehicle (trans-
mission, after treatment,) are considered, the en-
gine model and its control must be coupled to
other component models, developed in various
modelling environments. The model integration
capabilities are important.

The plan of this paper will follow the structure given
by these different stages. Each of them will be de-
scribed in detail in a different section that details the
design choices, the advantages and drawbacks of
Modelica in this context.

2 System understanding: develop-
ment of ModEngine library

Requirements for the ModEngine library were de-
rived from the existing IFPEN AMESim library (En-
gine). The users can quickly assemble blocks that
result in vehicle simulators. ModEngine is now func-
tional in Dymola [20] and OpenModelica [21]; it
contains more than 250 sub models. We continue to
contribute and to optimize it in order to obtain accu-
rate and fast calculations for control and real-time
applications, respecting the procedure described by
figure 1below.

Figure1: Modelling /Simulation/Control/Real-time

validation Cycle

The ModEngine library has been developed to allow
the simulation of a complete virtual engine using a
characteristic time-scale of the order of the crank-

shaft angle. A variety of elements are available to
build representative models for engine components,
such as turbocharger, wastegate, gasoline or Diesel
injectors, valve, air path, EGR loop etc... Figure 3
shows these ModEngine components. Moreover, the
library uses an advanced modelling approach to take
accurately into account the relevant physical phe-
nomena taking place in the engine �[5]. The computed
gas consists of 3 species: fresh air vaporized fuel and
burnt gas. Thanks to the object oriented language
Modelica, it can be automatically extended to n-
gases for future development of the library. Gener-
ally, 3 gases is a thermodynamic assumption that has
been identified as sufficient for engine simulation
results. More than 3 gases, generally 12 gases have
to be used for pollutant emissions modelling. Main
relevant orifice and pipe elements are available such
as air throttle, valve, straight and kneed ducts. Fric-
tion and inertial effects can be also taken into ac-
count. Heat exchanges are modelled for each element
and specific heat exchanger models are also avail-
able with air and water cooling systems. An ideal
camshaft system is proposed. Inlet and exhaust
valves are piloted by valve lift trajectories and cross
section characteristics. The elements to build most of
the turbocharger technologies are proposed. The
modelling approach is based on turbocharger manu-
facturer's maps.

Concerning the combustion process, a first level of
modelling is available with an empirical model based
on the Wiebe's law �[2]. Generally, this model is used
through a mapping of the combustion phenomena
based on experimental cylinder pressure; the coeffi-
cients of Wiebe's law are calculated defining a map
covering the engine operating conditions. This com-
bustion model is a mathematical based model that
gives an evolution law for the heat release. 4 coeffi-
cients are needed to fit the model on experiment
pressure signal for each phase of the combustion.
Generally, due to their simplicity, these models are
used for real-time applications. The parameters of
this function are optimized and mapped according to
experimental results. Bohbot et al. [8] have used a
simple Wiebe law, coupled with an automatic tool to
create the parameter maps using both experimental
and 3D CFD results. This model can be use either
gasoline or Diesel engine simulation. For Diesel
simulation, a double Wiebe equation is generally
used.

The second level of modelling is given by efficient
phenomenological models. For the spark ignition
engines, the CFM-1D model is used �[3]. This com-

�������

�������

�������

bustion model is based on the CFM combustion
model �[6] developed at IFPEN in the 3D code IFP-
C3D �[7]. The coherent flame model (CFM) is a
combustion model adapted to the flamelet regime for
premixed mixtures. This approach is representative
of the premixed flame combustion, which represents
the main oxidation mechanism in spark ignition (SI)
engines. To calibrate this model, 6 different physical
coefficients must be defined to calculate the initiali-
zation of the turbulence, the dissipation of the turbu-
lence, the turbulence mixing scale, the flame wrin-
kling, the flame initial volume and the tumble value.
The first 5 are constant coefficients, while the last
one defining the tumble coefficient value can be de-
fined as a function of the volumetric efficiency of the
engine.

For Diesel engine, an advanced Barba [1] model de-
veloped at IFP is implemented in ModEngine [9].
The Barba’s model can reproduce the conventional
Diesel combustion process, using only 2 zones (a
first zone for the description of the pre-mixed com-
bustion and a second one for the diffusion mode).
With a reduced number of parameters, it can be used
for a wide range of operating points. In this model,
the combustion process is divided in 2 steps. In a
first step, the fuel is burnt using a premixed model
with the hypothesis of flame propagation in the pre-
mixed zone. In a second step, when the pre-mixed
zone is burnt, the remaining fuel is oxidized using a
mixing controlled combustion model. The different
hypothesis and equations of the Barba’s combustion
model are presented in �[10].

Cylinder wall thermal exchanges can be taken into
account following Woschni models �[4]. Injection
models allow governing the injected fuel mass rate
using maps or algebraic functions. The fuel can be
injected in gaseous phase or in liquid phase. The va-
porization process is governed by a characteristic
timescale for Direct or Port Fuel Injection.
As shown in Figure 3, the ModEngine library con-
tains 22 different packages and at least 250 different
models.Figure 4 shows a direct injection single-
cylinder modelling and a Mean Value Engine Mod-
eling with the ModEngine library. All models have
been validated with dedicated test cases to ensure the
non regression of each component (Figure 5) and
with functional tests to validate the whole library.
The validation of elementary sub models has been
done using as reference results the IFP-Engine li-
brary developed by IFPEN in the LMS Imagine lab
Platform AMESim, functional validation of com-

plete engines, comparison with experimental data,
steady state and transient data from test campaigns
made at IFPEN.
Figure 2 shows a numerical comparison obtained
with ModEngine and IFP-Engine using the Diesel
combustion model (Barba) on a one-cylinder Diesel
Direct injection engine that validates the good im-
plementation of the Barba model in the Modelica
language.

Figure 2: In-cylinder pressure comparisons obtained
with Barba Model between ModEngine / Reference

(IFP-Engine).

To connect different components, 9 connectors have
been implemented in ModEngine. These connectors
allow the connection of mechanical part, liquid flow,
gaseous flow and thermal flow.

For instance, the connector which links the air path
to the cylinder chamber is the PFlowPort connector.
Enthalpy and mass flow rate with the mass fraction
are defined as input and the output are containing the
thermodynamic state and the partial densities.

connector PflowPort "Input Pflow Port"
 parameter Integer ngas = 3 "Gaz number";
 input SI.EnthalpyFlowRate dh "input enthalpy flow rate";
 input Real dm "input mass flow rate [kg/s]";
 input Real x[ngas] "input mass fraction vector [null]";
output SI.Temperature temperature "output temperature";
ouput SI.Pressure pressure "output pressure";
ouput Real rhoOut[ngas] "output density vector [kg/m**3]";
end PflowPort;

�������

�������

�������

�������

Figure3: ModEngine library

Figure 4: Single cylinder engine and MVEM engine

models.

Figure5:
Non regression test case for each component

3 Control development

For the development of engine control strategies,
models representing the complete engine are needed.
The ModEngine library described above can be used
to design such models in Dymola. This first subsec-
tion below shows validation results for a complete
engine model.
Furthermore, the multiplatform capabilities of Mode-
lica language can be very interesting from a cost
point of view, because it allows using a different en-
vironment for the execution of the model at this

stage, than that used for the model design. In the fol-
lowing subsection the library results obtained with
different platforms are compared.

3.1 Complete engine model validation in Dy-
mola

The engine considered here is a four cylinder gaso-
line engine with fixed geometry turbocharger. Its
model is shown in figure 6. The following approach
has also been undertaken for Diesel engines, though
it is not exposed here for lack of space.
Two types of tests have been performed: steady state
and transient. In steady state the model results are
compared with experimental measurements for oper-
ating points covering the whole engine range. For
transient tests the comparison is made on a driving
cycle measured on the test bench.

Figure 6 : complete engine model in ModEngine

Steady State tests

The model results are compared for various operat-
ing points with experimental measurements. These
operating points are defined by :

- engine speed
- intake manifold pressure

The following variables are controlled to setpoints :
- intake manifold pressure is controlled by either
the throttle or the wastegate to the setpoint de-
fined by the operating conditions
- the air fuel ratio is controlled at stoichiometry
by the injected fuel mass

The thermodynamic conditions along the air system
and cylinder are model outputs. The following figure
shows a good match between the torque obtained
experimentally and with the model. A comparison of

the thermodynamic conditions along the air system
would show similar results.

Figure 7: The torque match

Transient tests
The model is now compared with transient results. It
is plugged to engine control software, running in co
simulation in Simulink. The inputs of the model are:

- engine speed
- torque setpoint

The engine control software determines in closed
loop the commands of the engine (actuators posi-
tions: throttle and waste gate, injection timing, spark
advance) based on the sensor values received from
the model. The results are shown in the figure 8, en-
hancing again the good behavior of the simulator
with respect to experiments.

Figure 8

3.2 Comparisons: Dymola/Openmodelica

All the elementary models developed in Dymola
were translated in Openmodelica. The translation
was not immediately done and needed some reshuf-
fle. Comparisons used a fixed and variables step in-
tegrators (Runge-Kutta / Euler; Dassl, /Dassl2).
The main variables which were selected to verify the
accuracy of the results using Dymola and OpenMod-
elica are the temperature, the pressure in the cylinder
(figures 9, 10, 13), and the Dissipative kinetic energy
(figures 11, 12, 14).
We show following some comparisons between Dy-
mola and OpenModelica for 3 combustions models.

Wiebe model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

14 x 105

Time [s]

P
re

ss
ur

e
[P

a]

Dymola
OpenModelica

Figure9: Cylinder Pressure

0 10 20 30 40 50
-50

0

50

100

150

200

250

300

Point number

T
or

qu
e

[N
m

]

exp.
model

0 50 100 150 200
0

500

1000

1500

2000

2500

T im e [s]

E
ng

in
e

sp
ee

d
[rp

m
]

5 0 1 0 0 1 5 0 2 0 0
0

5 0

1 0 0

1 5 0

T im e [s]

T
or

qu
e

[N
m

]

M o d e l
E x p .

0 0.01 0.02 0.03 0.04 0.05 0.06
250

300

350

400

450

500

550

Time [s]

Te
m

pe
ra

tu
re

 [K
]

Dymola
OpenModelica

Figure10: Cylinder temperature

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure11 : Energy model

CFM model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

1000

1200

1400

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure12: Energy model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

x 106

Time [s]

P
re

ss
ur

e
[P

a]

Dymola
OpenModelica

 Figure13: Pressure model

Barba model

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

Time [s]

E
ne

rg
y

[J
]

Dymola
OpenModelica

Figure14: Energy model

3.3 Conclusions

ModEngine simulation results are performed respect-
ing the same integration conditions using the two
platforms Dymola and OpenModelica.
Models contain 683 variables and equations; with
235 zeros crossing and without numerical jacobians.
For the same final time simulation and integrators
having the same tolerances it seems that Dassl and
RungeKutta in Dymola take acceptable equivalent
time, while integration with OpenModelica with both
fixed or variable step takes more longer time.
The two platforms give similar results; the errors are
less than 1%.

4 System Integration and control
validation

The multidisciplinary aspect of complex systems
leads to use different tools for the design step. That's
why the simulation step requires co-simulation tech-
niques in order to exchange data between simulators.
The concept of functional mockup provides ad-
vancement to model exchange during the product
design and validation cycles. Using models through
their interfaces allows hiding their implementation
details and making their usage easier.

4.1 xMOD

xMOD [12] is a platform which combines an integra-
tion environment for various heterogeneous models,
together with a virtual test laboratory. xMOD offers
a range of different functionalities, such as the inte-
gration of heterogeneous models (Simulink, AME-
Sim...), confidentiality management for models when
they are imported, virtual instrumentation, test auto-
mation, etc. The purpose of xMOD is to make it pos-
sible for models to be used by people other than
those who created them, and for them to be shared.
xMOD provides simulation functions in various
simulation schemes: real-time, extended time or as
soon as possible. Its execution kernel can be used to
process various integrated models in multiprocessor
and multicore. xMOD is built around the following
key ideas:

• Using a unified representation of all hetero-
geneous models that is simple and complete
enough for them to be integrated and co-
simulated, and for the expertise that they
contain to be protected.

• Abstracting the modelling language through
a virtual instrumentation, such that the mod-
els can be easily understood by people other
than those who created them, or by people
who do not have knowledge of the languages
in which they were written.

• Focusing on using the models (they are al-
ways built in the usual modelling environ-
ments), and providing ergonomically-
designed features for interacting with the
simulations, running the tests and using the
results.

4.2 FMI

The ITEA2 project MODELISAR is providing solu-
tions enabling the integrated design, test and man-
agement of automotive systems. One result of this

project is a new open Functional Mockup Interface
(FMI) to support co-simulation between simulation
tools, in particular Modelica, for system modelling
and AUTOSAR for embedded control software gen-
eration [24]. The FMI specifies C and XML inter-
faces for dynamic systems to be used as an inter-
change format between different tools. This interface
is to be implemented by an executable called FMU
(Functional Model Unit). The FMI functions are
called by a simulator to create one or more instances
of the FMU, called models, and to run these models,
typically together with other models. An FMU may
either be self-integrating (co-simulation) or require
the simulator to perform numerical integration. The
FMI goal is to describe models of dynamic systems
which are, in general, described by differential, alge-
braic and discrete equations with time, state and step
events. The interface is designed so that large models
can be described and consists of the following two
parts: A model interface: All needed equations are
evaluated by calling standardized C functions. A
model description schema: All variables in the model
are defined in a standardized way in a XML file. The
C-code could then be executed in an embedded sys-
tem without the overhead of the variable definition.

4.3 Integrating FMI in xMOD

In order to extend the capabilities of our co-
simulation tool we chose to integrate the FMI func-
tionalities to support more heterogeneous models
coming from Modelica based tools. This extends the
capabilities of xMOD allowing it to integrate models
(in the form of FMUs) coming from various Mode-
lica compatible authoring tools like AMESim Dy-
mola, SimulationX, Simpack...

To integrate FMI-for-cosimulation functionalities in
xMOD, we opted for the wrapper approach. This
solution is applicable for tools offering library inter-
faces with the ability to call functions or methods. In
xMOD, each instantiated model has its library inter-
face providing common generic functions to evaluate
the model dynamic equations. To integrate FMI
functionalities, we chose to develop a wrapper li-
brary whose main purpose is to load FMU models
and call their FMI functions. All the FMU model
functions are wrapped in the common generic func-
tions. The class diagram below shows the part of the
design of the FMU wrapper. The common generic
functions are listed in the xMODFMU wrapper class.
Based on this approach, we succeed to make xMOD
FMI compatible.

4.4 Control validation

Before their implementation in the actual electronics
unit, it is necessary to validate the control strategies
in a "real-time representative" simulation environ-
ment. Thanks to xMOD and to the implementation of
the FMI concept, it is possible to build global co-
simulations involving the physical models (from
ModEngine), imported in xMOD as FMUs, as well
as the control strategies, which are usually developed
in Simulink, and which are imported in xMOD using
the xMOD Target for Real-Time Workshop [14].
This global co-simulation may be used for control
laws parameters tuning and pre-calibration as well as
closed loop system performance assessment. (Figure
15).

Figure 15: Screen shot from xMOD execution win-
dow illustrating the validation of a co-simulation

platform integration an FMU of a flex-fuel combus-
tion engine, which was generated from Dymola, run-

ning together with Simulink models (controls) and
AMESim models (vehicle Dynamics)

5 Perspectives: real-time simulation

Real-time simulation of a single model is a non-
sense. Real-time simulation is needed when models
are supposed to interact with physical part of the
whole system, for example when coupling simulated
and real components in a Hardware-in-the-Loop
(HiL) process. Indeed, this process is representative
and successful only if components are unable to dis-
tinguish if others components are real or simulated.
It implies that a simulated component must have the
same timing behaviour than its corresponding real
component. Real-time constraints are consequently
inherited from the needed data exchange between
components. For example, let consider we want to

connect our engine models to a real hardware con-
troller which acquire sensor data and send its actua-
tors command every 500µs. To make possible this
HiL process we must ensure that our model simula-
tion accuracy is sufficient to always be able to simu-
late 500µs of engine behaviour in less than 500µs of
real-time. Notice that verifying that you can simulate
30 seconds of the engine behaviour in less than 30
seconds of real-time is not sufficient to guarantee the
previous requirements. Indeed, in the HiL process,
even if 500µs of engine behaviour are simulated in
less than 500µs, the engine simulation cannot go on
before the end of the 500µs period in order to receive
controller data.
Consequently, improving performance for Madelia
models is a necessary condition for simulations to
reach real-time. Engineers often think about improv-
ing their models efficiency at the end of the design
phase. This leads often to non efficient simulations.
In [13] we showed that the needs for efficiency
should be considered as soon as the modelling step
starts. A set of general methods based on a closer
view on the Modelica's modelling and simulation
processes are presented to give hints to the designers
in order to reach real-time requirements.
The Functional Mock-up Interface could also help to
gain in efficiency for Modelica models. Indeed, the
FMI and especially, the FMI for Model Exchange,
gives freedom to the user to handle model's execu-
tion in different ways. For example, the FMI does
not enforce any predefined event handling mecha-
nism like the one provided by Dymola or other Mod-
elica tools.

6 Modelica contribution and future
works

We end this article on the observations and
reflections on the use of language and focused on a
return of the technical problems [15] that in fact
open to other possibilities to extend the language.
Today we are participating intensively in various
activities on Modelica. Among the areas for future
work , we will give the possible directions we intend
to take .

6.1 Dymola and OpenModelica implementation
feedback

The goal with the OpenModelica effort is to create a
comprehensive Open Source Modelica modeling,
compilation and simulation environment based on
free software distributed in binary and source code

for research, teaching and industrial usage. However,
we think that for this latter case, Dymola is ahead of
OpenModelica tool. Until today, we notice that
OpenModelica doesn't support yet all Modelica
specifications. Thereby, the original models have
been to be depreciated to run correctly. We noticed
also that the OpenModelica fixed step solver is much
accurate then Dymola fixed step solver. For exam-
ple, the figure 15 compares the RungeKutta 4 solver
of the two platforms against the Dassl solver which
is taken as the reference:

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

200

400

600

800

1000

1200

1400

Time

CFM Energy

Dassl
Dymola RK4 10-5
Dymola RK4 10-6
OpenModelica RK4 10-5

Figure 15

Finally, we can notice also that Dymola provides
unique support for real-time and hardware-in-the-
loop simulation (HILS) instead of the actual version
OpenModelica.

6.2 Future directions

LMS [31] and INRIA [27] have developed a
compiler based on Modelica, named Modelicac[18],
during the SIMPA2-C6E2 project [16, 17], which is
still in progress. Our aims in the near future is to
both continue to test Modelica langage on different
platform AMESim/ScicosLab, OpenModelica and
Dymola, in order to have heterogenous, interoperable
and multiplatform librairy. We will continue our
involvement in European projects, more particularly
on the control, FMI , xMOD and real-time
applications involving Modelica language.
Key elements of the long-term orientation of our
work is the success of European projects. Indeed, if
it turns out that Modelica provides benifit and is the
"standard" recognized by the industry, several fields
of engineering systems will adopt Modelica
language.

References

[1] Barba C., Burkhardt C., Boulouchos K.,
Bargende M. (2000) A phenomenological
combustion model for heat release rate pre-
diction in high speed DI Diesel engines with
common rail injection, SAE Technical Pa-
per 2000-01-2933.

[2] Wiebe, I.I., "Semi-empirical expression for
combustion rate in engines", Proceedings of
Conference on piston engines, USSR Acad-
emy of sciences, Moscow, pp. 186-191,
1956.

[3] F-A. Lafossas, O. Colin, F. Le Berr, P. Me-
negazzi, “Application of a new 1D combus-
tion model to gasoline transient engine op-
eration”, SAE 2005 Fuels and Lubricants
Meeting Exhibition and Congress, May 11-
13 2005, Rio de Janeiro, Brazil - SAE 2005-
01-2107.

[4] Woschni G., "Universally Applicable Equa-
tion for the Instantaneous Heat Transfer Co-
efficient in the Internal Combustion En-
gine", SAE paper 670931, SAE Trans., vol.
76, 1967.

[5] Menegazzi, P., Aubret, P., Vernhes, P.-L.,
"Conventional and Hybrid Vehicle Emis-
sion, Fuel Economy and Performance
Analysis System Simulation", FISITA 2004,
23-27 May, Barcelona, Spain

[6] Colin, O., Benkenida, A., Angelberger, C.,
"A 3D Modelling of Mixing, Ignition and
Combustion Phenomena in Highly Stratified
Gasoline Engines", Oil & Gas Science and
Technology, vol. 58, pp. 47-62, 2003

[7] "IFP-C3D: an Unstructured Parallel Solver
for Reactive Compressible Gas Flow" J.
Bohbot, N. Gillet, A. Benkenida, Oil Gas
Sci. Tech., 64 (2009), 309-336

[8] Bohbot J., Lafossas F.-A., Miche M.,
Chraibi M., Menegazzi P. (2004) A new
coupling approach using a1D system simu-
lation software and a 3D combustion code
applied to transient engine operation, SAE
Technical Paper 2004-01-3002.

[9] F.-A. Lafossas, M. Marbaix and P. Me-
negazzi "Development of a Coupling Ap-
proach between 0D D.I. Diesel Combustion
and Pollutant Models: Application to a
Transient Engine Evolution" Oil & Gas Sci-
ence and Technology - Rev. IFP, Vol. 63
(2008), No. 4, pp. 479-494

[10] Barba C., Burkhardt C., Boulouchos K.,
Bargende M. (2000) A phenomenological
combustion model for heat release rate pre-
diction in high speed DI Diesel engines with
common rail injection, SAE Technical Pa-
per 2000-01-2933.

[11] Modelisar Functional mock_up interface for
model exchange version 1.0. Technical Re-
port 07006, MODELISAR consortium,
January 2010.

[12] M. Ben Gaïd, G. Corde, A. Chasse, B. Léty,
R. De La Rubia, M. Ould Abdellahi. Het-
erogeneous Model Integration and Virtual
Experimentation using xMOD: Application
to Hybrid Powertrain Design and Validation
In Proc. 7th EUROSIM Congress on Model-
ing and Simulation, Prague, Czech Repub-
lic, September 2010.

[13] H. Hadj-Amor, C Faure, M. Ben Gaïd, N.
Pernet, “Towards a Modelica Real-time co-
simulation with FMI”, Multiphysics Simula-
tion - Advanced Methods for Industrial En-
gineering Conference, Fraunhofer, 22-23
June 2010.

[14] Coppin Thomas, Grondin Olivier, Le Sol-
liec Guenael, Maamri Nezha, Rambault
Laurent. "Control-oriented mean – value
model of a fuel-flexible turbocharged spark-
ingnition engine". SAE World congress, De-
troit USA, 13-15 april 2010.

[15] Benjelloun Zakia; Moulin Philippe, Najafi
Masoud, Shen Xduong. "Simulation of the
mean-value internal combustion engine in
modelica" MathMod International Confer-
ence on Mathematical Modelling, Vienna,
Austria, 11-13 February 2009.

[16] Benjelloun Zakia, Najafi Masoud. "Using
modelica for modelling and simulation of
spark ignited engine and drilling station in
IFP". International modelica conference,
Bielefeld, Germany, 3-4 march 2008.

[17] Benjelloun Zakia, Najafi Masoud. "Model-
ling complex system with modelica in sci-
cos: application to mean value spark en-
gine". ESM European Simulation and Mod-
elling conference, St.Julian's, Malta, 22-24
October 2007.

[18] Masoud Najafi, Ramine Nikoukhah, Serge
Steer, Sebastie Furic. "New features and
new challenges in modelling and simulation
in Scicos" Proceedings of the 2005 IEEE
Conference on Control Applications. To-
ronto, Canada, August 28-31, 2005.

[19] http://www.modelica.org/
[20] http://www.3ds.com/products/catia/p

ortfolio/dymola
[21] http://www.openmodelica.org/
[22] http://www.ifpenergiesnouvelles.fr/
[23] http://www.eurosyslib.com/
[24] http://modelisar.org/
[25] www.openprod.org
[26] http://www.amesim.com/
[27] http://www-rocq.inria.fr/scicos/
[28] http://www.pme.gouv.fr
[29] http://www.itea2.org/
[30] http://www.ida.liu.se/labs/pelab/mod

elica/OpenSourceModelicaConsortiu
m.html

[31] http://www.LMSINTL.com

Thanks

This work was realized thanks to the labeling of the
projects Eurosyslib, Modelisar, and OpenProd by
the European Organisme ITEA 2 (Information
Technology for European Advancement)[29] and,
thanks to financial support from DGCIS (Direction
Générale de la Compétitivité, de l'Industrie et des
Services)[28].
IFPEN is an OSMC [30] member and thus we bene-
fits from fruitful discussions during the adaption of
the library ModEngine in OpenModelica

