
Automatic Generation of Graphical User Interfaces
for Simulation of Modelica Models

Clemens Schlegel
Schlegel Simulation GmbH

Meichelbeckstr. 8b
D-85356 Freising

cs@schlegel-simulation.de

Reinhard Finsterwalder
Universität der Bundeswehr

München
D-85577 Neubiberg

reinhard.finsterwalder@unibw.de

Abstract

For a certain class of applications simulation models
are developed and then rolled out for standalone
usage without the tool with which they have been
developed. The user is intended to perform simula-
tion runs, to inspect results, to change selected para-
meters within given bounds, but not to inspect or
even change the model itself.
The reasons for such a usage scenario are manifold:
The simulation is intended to be used as a black-box
tool by non simulation specialists, a component ven-
dor (electric drives, pneumatic or hydraulic compo-
nents, etc.) likes to demonstrate the performance of
his components in the context of a simulation or the
model developer may hide model details.
If a model development tool includes code genera-
tion the model specific simulator can be setup fully
automatic. However, a GUI (graphical user interface)
for such a simulator must be developed manually.
We developed a tool which automatically generates a
simulator GUI from a Modelica model and data defi-
nition.

1 Introduction

Keywords: graphical user interface generation;
Modelica parser; standalone simulator

The core functionality of a model-specific simulator
is to run a simulation experiment, to inspect trajecto-
ries and / or scalar results and to change, store and
retrieve parameters. The computational part of such a
simulator may be set up easily using a code generat-
ing model development tool. However, to our know-
ledge, there are no tools publically available for au-
tomatic generation of the graphical user interface

(GUI) part. On the other hand nearly all information
needed to set up a simulator specific GUI is available
in the model code. This GUI, which may be used
independent of a general simulation environment,
can be set up automatically by parsing a Modelica
model. We used Dymola [1] for model development
and model specific C-code generation and developed
an own tool for GUI generation.

1.1 Limitations

Since the generated model specific C-code can’t be
changed anymore the GUI’s usage is restricted to
operations which do not require to change variable
dimensions or to replace parts of the model. Arrays
must have a fixed dimension or be handled via an
external C-function with dynamic storage allocation.

1.2 Core requirements

Focusing on the black-box simulation case we define
the following desirable functional requirements for
the simulator and the GUI. Some of this require-
ments map directly to Modelica parameter and
record declarations.

• The simulation executable is driven by a parame-

ter and simulation control input file and saves
computed trajectories in a result file.

• The GUI is generated at run time by parsing
Modelica files, the GUI structure is not stored.

• Only model components and output variables
declared on the top hierarchy level of the model
are available in the GUI. Protected, inherited,
modified and replaced declarations are taken into
account, no restrictions on the Modelica lan-
guage apply.

mailto:cs@schlegel-simulation.de�
mailto:reinhard.finsterwalder@unibw.de�

• Only parameter record classes and top hierarchy
model classes (including all inherited and redec-
lared classes) must be available as Modelica
code for GUI generation. Thus the model may
contain references to confidential libraries with-
out disclosure of the corresponding Modelica
code, external function calls and encrypted
classes (if allowed by the modeling tool).

• Names and attributes of Modelica parameters
and output variables and restrictions on parame-
ters (protected, read only, min/max values) are
retained in the GUI.

• Based on parameter record class parameteriza-
tion drop-down lists for parameter record selec-
tion are set up. This means a model provider (or
even a GUI user) may later add parameter
records which automatically show up in the cor-
responding selection list without rebuilding the
simulator executable. These records may contain
any data type including arrays, optionally a
whole record can’t be modified and / or its con-
tent is not visible. This feature facilitates the
usage of datasheet libraries without disclosure of
data details.

• It must be possible to read data from external
files at runtime without fixed file names.

• All model parameters including records, record
names and modified records may be stored on
and read from file. The tool must check the con-
sistency of the model, the read in parameter file
and the parameter record definitions.

1.3 Additional functionality

Apart from the model parameterization and simula-
tion experiment settings some more information is
needed for automatic generation of a handy GUI:

• The top model file name and class name
• The name of the simulator executable
• The user may specify predefined trajectory plots
• The user may specify predefined reports contain-

ing descriptive text and trajectory final values

All this information is stored in a configuration file.

2 Parsing the Modelica model

For parsing Modelica [2] files the parser generator
tool PCCTS [3] has been used. Based on a grammat-
ical description of a formal language, PCCTS gene-
rates C++ code of a corresponding parser which we
integrated in our application.

2.1 Parsing the model and the parameter input

All Modelica files in a directory structure are parsed
starting from the directory where the configuration is
stored. The parser builds an abstract syntax tree for
the Modelica code of the complete model hierarchy.
The parser fully supports inheritance, modifications
and redeclarations within the model hierarchy. Only
the data needed for setup of the GUI are retained:
model components, model outputs, component pa-
rameters, and parameter records. All other tokens are
skipped, e.g. algorithm clauses, connect statements,
equation clauses, arithmetic expressions.

Since only classes in the model hierarchy are parsed,
no information is available from model libraries out-
side of that hierarchy. In order to generate a com-
plete parameter input file, the remaining parameters
are found by parsing the default parameter input file
of the simulator (for Dymola it may be generated by
the simulator itself).

2.2 Consistency check

It must be checked whether the simulation executa-
ble has been generated from the parsed model.
Therefore it is verified that all parameters of the
model are consistent with the parameters of the pa-
rameter input file which may be read in to retrieve
previous parameter settings.

2.3 GUI setup

By walking through the abstract syntax tree the
graphical user interface is built: tabs for components
and controls for model parameters are created and
drop-down lists are set up for selecting replaceable
parameter records. Thus the user can switch records
without having to rebuild the simulation executable.
This feature is beyond the functionality of most
Modelica tools. Since record names are also stored
on the parameter file record selection settings (and
not only parameter settings) of previous simulation
runs can be retrieved. Modified parameter values are
marked red in the GUI.

3 The generated simulator GUI

3.1 General description

At runtime the GUI generator needs the following
files:

• Configuration file

• Modelica code of parameter record classes and
top hierarchy model classes including all inhe-
rited and redeclared classes

• Model specific simulator executable

To start the GUI generation the configuration file is
read in. After parsing the tool displays a menu and
icon bar and three areas: a model and output naviga-
tion tree, a multi document view area for model
component parameters, trajectory and report display,
and a message area (figure 2, underlying Modelica
model see figure 1). Concerning model parameters
the GUI has the same functionality as a general si-
mulation tool. For each top level model component a
tab is displayed which contains all parameter and
record selection controls. Parameter name, default
value, unit and descriptive text are shown. Clicking
the symbol right of a record selection control the
contents of the chosen record is shown. If not pro-
tected or read-only parameters may be edited within
the defined limits. If a parameter contains a file name
the contents of that file is displayed by clicking the
respective control (figure 3).

3.2 Performing simulation experiments

The complete parameter setup may be stored on or
read from file. To retain the user’s parameter
changes a new parameter input file is generated be-
fore starting a simulation run. That parameter file is
enriched by the names of the selected data records.
The default simulation experiment setup is contained
in the parameter file, but may be overridden using
the GUIs simulation menu. After a simulation run
the simulation log file is shown in the GUI message
area.

3.3 Reading data from file

Since arrays must have a fixed dimension (see sec-
tion 1.1) a model developer will make use of external
tables stored on file handled via an external C-
function with dynamic storage allocation. If a model
development tool does not support change of string
parameters without C-code rebuild a workaround has
to be implemented to allow reading from different
files. To do so the simulation model has to define
fixed file names while the corresponding data
records contain a parameter with the specific file
name. When starting a simulation run, the specific
parameter files are copied to the current directory
and renamed to the predefined fixed file names.

3.4 Trajectory and report display

The GUI supports the display of multiple diagrams
and reports in multiple windows. While multiple y-
axes are supported, trajectories with same unit and
similar range are automatically displayed with a
common y-axis. Numeric values of a selected trajec-
tory are displayed in addition in a list box (figure 4).
Predefined reports show up in a separate window of
the multi document view area (figure 4). Trajectories
from a previous simulation run may be read in from
file and displayed for comparison or used for addi-
tional reports.

4 Conclusion

In order to facilitate the development of black-box
simulators with a fixed model the automatic genera-
tion of simulator specific graphical user interfaces is
desirable. A practical approach for building the GUI
of such a simulator for Modelica models has been
presented. Parsing the model and the data definitions
a GUI is set up at run time. The main issues are to
check the consistency of the model, the parameter
file and the parameter record definitions and to map
a smart limitation of the parameter space to the GUI
in order to ensure that the simulator can be used as a
black-box.
Future development will focus on additional consis-
tency checks and user comfort. Pre-parsed model and
data definitions may be integrated directly in a bi-
nary code format of the GUI, thus avoiding to read in
the model at runtime. The documentation embedded
in a Modelica model may be made available in the
GUI. Simulation log files may be evaluated automat-
ically to detect convergence problems and event
chattering.

References

[1] Dymola Version 7.4. Dassault Systèmes,
Lund, Sweden. www.dymola.com.

[2] Modelica Specification, Version 3.1, May
2009. www.modelica.org/documents.

[3] Parr, T.J., Language Translation using
PCCTS and C++. Automata Publishing
Company, San Jose, 1993.

atmosphere road

A

chassis

km/h

controlBus controlBus

controlBus

Figure 1: A Modelica simulation model

Figure 2: GUI generator main view (model parsed)

Figure 3: Display of record, file and array contents

Figure 4: Trajectory and report display

	1 Introduction
	1.1 Limitations
	1.2 Core requirements
	1.3 Additional functionality

	2 Parsing the Modelica model
	2.1 Parsing the model and the parameter input
	2.2 Consistency check
	2.3 GUI setup

	3 The generated simulator GUI
	3.1 General description
	3.2 Performing simulation experiments
	3.3 Reading data from file
	3.4 Trajectory and report display

	4 Conclusion

