

Variability and Type Calculation for Equation of Modelica

model

Junjie Tang Jianwan Ding Liping Chen Xiong Gong

National CAD Center

1037 Luoyu Road, Wuhan, China

tjj.hust@gmail.com dingjw@hustcad.com Chenlp@hustcad.com Gongx@hustcad.com

Abstract:

Differential algebraic equations (DAEs),

translated from Modelica model, is usually

represented by bipartite graph. One of basic

premises of creating bipartite graph is to

determine types of variables and equations.

Type calculation of Modelica equation has

been researched and a serial of rules for

variability and type calculation has been

concluded in this paper.

Equation type is the type of variable that

equation can solve. Equation type is

calculated in symbolic by both variability

and basic type of its sub-expressions.

Generally, type calculation is a bottom-up

way as expression is represented in form of

tree. But, there are kinds of particular

expressions, such as integer(), noEvent(),

multi-output function call expression, etc,

which may cause type and variability

incompatible problem. The issue is

discussed in the paper, and several rules for

variability and type calculation are present.

These rules will helps to debug out obscure

errors, and several typical examples are

present to show how the rules work.

Keyword: equation type; equation

variability; compatibility of variability and

type; model debug

1. Introduction

Differential algebraic equations (DAEs),

generated by compiling and translating

Modelica model, should be debugged by

method of structural analysis [1], and be

reduced and decomposed to subsystem

serials [2], to reduce the scale of equation

system and improve efficiency of numerical

calculation. Most of these symbolic

operations are usually processed based on

representation of bipartite graph of DAEs,

and one of basic premises of creating

bipartite graph is determining type of

variables and equations. The type of

variable, obviously, is as defined in model,

while the type of equation has to be deduced

from its sub-expressions [3].

Equation type is the type of variable that

equation can solve. Equation type is

symbolic calculated by both variability and

basic type of its sub-expressions. Generally,

type calculation is a bottom-up way as

expression is represented in form of tree.

But, there are some particular expressions,

such as integer(), noEvent(), multi-output

function call expression, etc, which may

cause type and variability incompatible

problem, that is variability of equation is not

compatible with type of it. In the paper,

reason for this problem is discussed, and the

way for debugging is introduced.

Section 2 shows basic rules of equation

mailto:tjj.hust@gmail.com
mailto:dingjw@hustcad.com
mailto:Chenlp@hustcad.com

type calculation. Section 3 analyzes type

and variability incompatible problem and

concludes corresponding rules for

variability and type calculation. Section 4

complements an additional rule for

variability calculation for symbolic

transformation. Section 5 is the conclusion

of this paper.

2. Basic Rules for Equation

Type Calculation

There are four basic types of variable of

Modelica model, as Real, Integer, Boolean,

and String, predefined by Modelica.

Correspondingly, there are four basic types

for equation. Record equations should be

split into basic types. The following rules of

equation type calculation can be

summarized from Modelica Language

Specification (Modelica 3.2, 28, 61, 64) [4]:

Rule 1. The resulting type of equation is

the same as of the type compatible

expression of two sides.

Rule 2. The resulting variability of

equation is the higher variability of two

sides.

3. Compatibility of Type and

Variability

As we known, Real type variable can hold

all kinds of variability, while variability of

Integer, Boolean or String Type variable is

no higher than discrete. So does expressions

and equations. That is the rule:

Rule 3. The resulting type and variability

of equation variability must be compatible.

In following part, cases for Rule 3 are

introduced, to show how it works.

3.1 integer() and noEvent()

There are kinds of pre-defined built-in

function in Modelica (Modelica 3.2, 19, 109).

Generally, type and variability calculation of

call of these functions follows Rule 1 and 2.

However, there are two particular functions,

integer() and noEvent(), are quite different.

According definition of them, there is a rule

for their variability and type calculation.

Rule 4. Variability of integer() is no higher

than discrete, and type of it is integer;

variability of noEvent() is continuous, and

type of it is the same as that of input

argument.

integer() is more like a implicit type

conversion function [5], like int() in C++, that

means variability of integer(x) is no higher

than discrete, even x is continuous, and type

of it is integer, obviously. So, integer(x)

indicates that x must be an independent

variable. Here is an example:

function fn1

 input Real x;

 input Integer y;

 output Real z;

 annotation (derivative = derfn1);

algorithm

 z:=x^2+y^2;

end fn1;

function derfn1

 input Real x;

 input Integer y;

 input Real xder;

 output Real zder;

algorithm

 zder:=2*x*xder+y^2;

end derfn1;

Real x;

Real y;

Real u;

Real v;

equation

 u=sin(2*time); // eq1

 x =cos(time); // eq2

 u= fn1(x, integer(y)); // eq3

 v = der(y)+x; // eq4

x y u v

eq1 eq2 eq3 eq4

Figure 1 Bipartite graph of equations, with

matching edges marked by thick lines

In the example, each equation is legal, all

their types are continuous, and here is the

bipartite graph for equations of model (Fig.

1). When finding matching in bipartite

graph, it should be careful that argument of

integer() cannot be the matching vertex with

the same equation integer() present in. So,

in this case, result of structural analysis is

that, y is under-determined, while x and u

are over-determined with equation eq1, eq2

and eq3.

noEvent() doesn’t trig event as defined

(Modelica 3.2, 26), even input argument is an

event expression. When we combined

noEvent() and integer() together, there was

an interesting result. Here is the simple

example.

Real x;

Integer i = 1;

Integer i2;

equation

 i = x; // eq1, legal

 i2 = noEvent(integer(x)); // eq2,

illegal

In this case, eq1 is legal, as variability of

eq1 is continuous (higher one of i and x), and

type of it is Real (as the same type of type

compatible variable of i and x). However,

eq2 is illegal, variability of eq2 is continuous

(right hand is continuous), while type of eq2 is

Integer (type of two hands of eq2 are Integer),

that is breach of Rule 3.

3.2 Call Expression of User-define

Function

Type and variability calculation of function

call follows Rule 5:

Rule 5. Assume that function is defined

as single output, variability of function call

expression is the same as the higher

variability of input real arguments; type of

function call is the same as the one of output

formal parameter.

Variability of function call expression is

the same as the higher variability of all input

real arguments, is because that “all

assignment statements within function are

implicitly treated with the noEvent

function” (Modelica 3.2, 87), which means

if input arguments are continuous, it is

impossible to generate a discrete output. For

example:

parameter Real a = 10;

parameter Real b = a+2;

parameter Real b = f(a+b, a)*2;

Since both a+b and a are parameter,

f(a+b, a) is parameter. But if model is:

Real a = 10;

parameter Real b = 2;

parameter Real b= f(a,2)*2; //illegal

Variability of f(a,2) is the higher

variability of a and 2, that is continuous.

A more complex example is like follows:

 function fn1

 input Real x;

 input Integer y;

 output Real z;

 annotation (derivative = derfn1);

algorithm

 z:=x^2+y^2;

end fn1;

function derfn1

 input Real x;

 input Integer y;

 input Real xder;

 output Real zder;

algorithm

 zder:=2*x*xder+y^2;

end derfn1;

function fn2

 input Real a;

 output Integer b;

algorithm

 b:= integer(a);

end fn2;

Real x;

Real y;

Real u;

Real v;

equation

 u=sin(2*time);

 x =cos(time);

 u= fn1(x, fn2(y)); // eq1, illegal

 v = der(y)+x;

In eq1, the variability of fn1(x, fn2(y)) is

continuous, as x is continuous, and the type

of it is Real, then the right hand and left

hand have the compatible variability and

type. However, the variability of fn2(y) is

continuous, and the type of it is Integer, that

is breach of Rule 3. We could make a

transformation to show this obscure error

more clearly. Let introduce Integer variable,

like:

Integer i = fn2(y); // eq2

Then eq1 is conceptually equivalent with:

u= fn1(x,i); // eq1’, legal

After transformation, eq1’ is legal, but

eq2 is a wrong equation, obviously, as type

of variable i is discrete, and variability of

fn2(y) is continuous. It is impossible to

assign a continuous value to a discrete

variable.

3.3 Symbol “.”

“.” is a symbol for member access. Let

extend its meanings to present split pattern

of multi-output function call.

For call expression of multi-output

function, variability and type calculation

follows Rule 5, with a split transformation

of function call. That is, equation that

contains multi-output function call

expression should be split into basic types

before type calculation. Take following case

as an example:

function fn

 input Real x;

 input Real y;

 output Real u;

 output Integer v;

algorithm

 u := x+y;

 v := integer(x-y);

end fn;

Real a,b,c,d;

Integer k;

equation

c=3*sin(time);

d=cos(time);

(a,k)=fn(c,d); // eq1

b=fn(2,if c>0 then 3 else -0.5); //eq2

In this case, eq1 should be split into

following equations:

a=fn(c,d).u; // eq1-1

k=fn(c,d).v; // eq1-2

And eq2, though it is a basic type

equation, should be equivalently

transformed into:

 b=fn(2,if c>0 then 3 else -0.5).u

Key of split transformation is to put the

corresponding output formal parameter at

the right position, with a symbol “.”, as a

member attached to its parent expression.

With these transformations, type of

multi-output function call expression could

be calculated by Rule 5. For example, the

type of right hand of equation k=fn(c,d).v is

the type of v, that is Integer, and the type of

equation is Integer. Variability of right hand

is continuous (higher variability of c and d),

and variability of equation is continuous. It

indicates that there is an error in equation

(a,k)=fn(c,d), with a breach of Rule 3.

3.4 If-Expression

If-expression is defined as “if expression1

then expression2 else expression3”

(Modelica 3.2, 19). Rule for variability and

type calculation of if expression is:

Rule 6. Variability of if-expression is the

highest variability of expression1,

expression2 and exression3, type of it is the

type of expression2.

Type of if-expression is type of

expression2, as expression2 and expression3

should be defined as type compatible, while

expression1 affects variability of

if-expression. For example:

Integer x=if noEvent(time>0) then 1 else

2;

 Variability of equation in the example is

continuous, as that of right hand is

continuous, following Rule 6, while type of

equation is Integer, as both hands are

Integer. Thus, resulting variability and type

breach Rule 3, means that equation is

illegal.

3.5 Event Expressions

For event expressions, like event

triggering mathematical functions

(Modelica 3.2, 21), relational expressions,

etc, calculation rule is:

Rule 7. Variability of event expression is

no higher than discrete, unless it is present

in when-clause.

For example:

Integer x;

equation

 when time > 0 then

 x = if noEvent(time > 0) then 1 else 2;

 end when;

For equation x = if noEvent(time > 0)

then 1 else 2 is present in when-clause,

variability of equation is discrete, different

with example in section 3.4, and type of it is

Integer. So, in this case, Rule 3 is followed,

and the equation is legal.

4. Rule for Symbolic

Transformation

In the case where function call is inlined,

part of assignment statements will become

the part of equations, and the inlined result

should be treated with noEvent function.

Here is an example:

function f

input Real in1;

input Real in2;

output Integer out1;

annotation(Inline=true);

 algorithm

 out1 := if in1>0 then in1 else in2;

 end f;

 Real x;

 Integer i = 2;

equation

 i = f(x, time);// eq3

When f(x, time) of eq3 is inlined, the

inlined result should be:

i =if noEvent (x>0) then x else time;

rather than:

i =if x>0 then x else time;

It is concluded as:

Rule 8. Symbolic transformation must not

change basic type and variability of

equation.

5. Conclusion

Type calculation of Modelica equation has

been researched and a serial of rules for

variability and type calculation has been

concluded in the paper. Kinds of expression

are analyzed to explain possible variability

and type incompatible problem, and more

rules are introduced, with several examples

to show how rules work. The rules for

variability and type calculation for equation

will helps to find out obscure errors in the

model(such as examples in section 3), and

to build more accurate bipartite graph for

DAEs from Modelica model.

REFERENCES

[1]. Peter Bunus, Peter Fritzson. Methods

for Structural Analysis and Debugging

of Modelica Models. Proceedings of

the 2nd International Modelica

Conference, 2002, 10: 157~165

[2]. Ding Jianwan. Research on Methods

for Consistency Analysis and

Reduction of Declarative Simulation

Models: [PhD thesis]. China:

Huazhong University of Science &

Technology, 2006

[3]. David Broman. Types in the Modelica

Language. Proceedings of the 5th

International Modelica Conference,

2006, 9:303~315

[4]. Modelica Language Specification V3.2.

https://www.modelica.org/.

[5]. Peter Fritzson. Principles of

Object-Oriented Modeling and

Simulation with Modelica 2.1.

Wiley-IEEE Press, New York, USA,

2004

[6]. Futong Lv. Numerical Computing

Methods, chapter 5. Tsinghua

University Press, 2008.

https://www.modelica.org/

