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Abstract 

An assistant Modelica package is introduced which 
supports the determination of model frequency re-
sponses or describing functions of Modelica models, 
as the case may be. The result is frequency response 
data which can be used for further analysis such as 
stability properties of the system in closed loop con-
trol or the derivation of linear time invariant (LTI) 
model approximations. The paper addresses inter alia 
proper scheduling of excitation frequency and ampli-
tude, a brief theory of describing functions (har-
monic linearization), the Modelica classes imple-
mented in the package, and some application exam-
ples. 

Keywords: Frequency response; describing function; 
system identification. 

 

 

Figure 1: Total Modelica model for frequency re-
sponse data acquisition of a plant model. 

1 Introduction 

Frequency responses are applied both for analysis 
and design of control systems. Multiple useful 
graphical representations of the frequency response 
exist like the Bode plot, the frequency response locus 
(also denoted Nyquist plot for open loop considera-

tions), or the Nichols chart. A number of established 
criteria for evaluating the dynamic properties of lin-
ear systems refer to their frequency response. Also 
open loop shaping and closed loop shaping control 
design methods are based on frequency responses. 
Moreover, some methods for system identification 
are available which are based on frequency response 
data.  

1.1 Approaches for frequency response deter-
mination 

Two methods for frequency response determination 
exist which are fundamentally different. The first 
method is to develop a white box model based on 
physical insight. After operations such as lineariza-
tion and further model transformation there is a 
Laplace transfer function which may be evaluated 
for any value of the frequency along the imaginary 
axis s = j. With Modelica models, the first ap-
proach is already half way done; the Bode plot of the 
linearized model can be used for comparison and 
assessment of the second one. 
The second approach is a black box approach apply-
ing correlation methods to experimentally acquired 
in- and output data. The focus of this paper is on the 
second method whereupon “experiment” is consid-
ered the simulation of a Modelica model. The tool 
provided with the presented package yields fre-
quency response data sampled over frequency being 
well comparable with FRD models in Matlab.  

1.2 Frequency response vs. model linearization 

Linearization of Modelica models may not be suit-
able to obtain the aimed result in all cases. Modelica 
modeling and simulation tools like Dymola or Ma-
pleSim provide methods for model linearization. If a 
linearized model exists then computing and plotting 
the frequency response is straightforward, for exam-
ple by using methods from the LinearSystems library 
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[1]. Nevertheless, standard linearization may yield 
unsatisfactory results. Imagine the case of a narrow 
dead zone characteristic at the system’s input. Then 
the gain of the linearized system is zero. However, it 
is evident that zero gain transfer behavior is a defi-
cient system description. Other examples of nonlin-
earities which yield problematic linearization results 
include hysteresis, breakaway force, slackness, and 
so on. In other cases system specifications directly 
refer to frequency responses which were determined 
using sinusoidal inputs with certain amplitude. An 
example from the domain of vehicle dynamics will 
be given in section 5. Again, standard linearization is 
not appropriate. 
On the other hand recording the frequency response 
data in a real world or simulation experiment re-
quires that the regarded system is stable. 

1.3 Frequency response of nonlinear systems 

Generalizing the frequency response from linear to 
nonlinear systems there is the notion of a describing 
function which will be explained in section 4. For 
ease of presentation, in this paper we will understand 
the term frequency response in the expanded sense of 
the describing function: It is the quotient of two 
phasors. The denominator of this quotient is the 
phasor of the sinusoidal input function with preas-
signed amplitude. The numerator is the phasor of the 
first harmonic of the steady state system response 
after all transient portions have decayed. Generally 
spoken, the frequency response hence is not only a 
function of the frequency. It may depend also on the 
input amplitude, cf. section 4.  

1.4 Contribution of the Modelica package and 
this paper 

Frequency response related topics having been ad-
dressed in the Modelica context so far include the 
investigation of powertrain oscillations in the Simu-
lationX environment [2] and the modal approach for 
flexible bodies [3]. Due to the lack of a generic 
Modelica frequency response data acquisition tool, it 
occurs so far that alternative environments such as 
Matlab are used for post processing simulation re-
sults of Modelica models [4]. The new package pre-
sented in this article is a contribution to close the 
gap. 
The paper is organized as follows. The issue of ade-
quate system stimulation is addressed by section 2. 
The procedure used for frequency response and de-
scribing function determination is explained in 3. For 
convenience, in section 4 the theory of describing 
functions is briefly described. Section 5 is dedicated 

to the Modelica specific implementation and the dis-
play of application examples. 

2 Plant stimulation 

For simplicity, in this paper the term plant stands for 
a Modelica model whose frequency response is 
searched for.  Contrary to real world experiments, in 
this case we do not need to consider the effect of dis-
turbances or noise. Of course, the approach is explic-
itly not restricted to controlled systems.  
Basically, the experimental frequency response de-
termination of a plant presumes that it is stimulated 
in an adequate manner. Excitation signals can be dis-
tinguished discrete valued vs. continuous, determi-
nistic vs. random, periodic vs. step or impulse, etc. 
The appropriateness depends on the class of systems 
to be identified and the method applied for identifi-
cation. In any case all system modes of interest 
should be stimulated to be apparent significantly 
enough in the output signal. For details, interested 
readers are referred to the technical literature, e.g. 
[12]. 

2.1 Quasi-harmonic plant excitation 

Here, we confine our considerations to quasi-
harmonic excitation signals, i.e. the stimulus is based 
on a sinusoidal function. Moreover, both the ampli-
tude and the frequency may depend on time. Here, 
we follow up the concept of sinus sweep or chirp 
signals. The function 
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is used as plant input where  
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is the integral of the instantaneous frequency f. Inci-
dentally, F(t) indicates the number of elapsed periods 
of the sine function and is therefore called period 
function in the sequel. The amplitude A may depend 
on time and/or frequency. 
In the simplest case, the frequency is constant: 

Startconst )( ftf   

tftF  Startconst )(  
(3)

However, in this case the stimulus consists of only 
one single frequency. A frequency response determi-
nation covering a frequency range thus needs several 
separate experiments each with its own frequency 
value along a sufficiently fine grid. Each of the ex-



periments should take long enough such that the 
plant gets steady state before any serviceable re-
sponse data can be collected. 
More generally, with (1), (2) it is possible to stimu-
late the plant continuously over a range [fStart , fEnd] of 
frequencies f(t), i.e. 

fStart f(t) fEnd (4)

each with adjusted amplitude in one single experi-
ment. However, the amplitude and frequency should 
be varying so slowly, that the plant can be consid-
ered in a steady state oscillation at any time. In real-
ity this assumption cannot be assured perfectly, oth-
erwise the total experiment would take an infinite 
duration. Rather, a scheduling for amplitude and fre-
quency is searched for such that accuracy of the re-
sult is traded off against efficiency of the experi-
ment. We start from the conception that it is most 
efficient to change the frequency and/or amplitude 
just as much as is necessary such that the transient 
effects remain negligible. At the same time it should 
be kept in mind that after plant excitation the plant 
response will be recorded and processed (cf. section 
4) for frequency response data acquisition. Ideally 
for efficiency, each period contributes serviceable 
i.e. non-redundant data. 
For illustrating the frequency scheduling problem 
lets assume that the sinusoidal excitation signal 
sweeps the interval from fStart = 0.1 Hz to fEnd = 10 Hz 
with a total number of n = 10 periods. Commonly, 
for frequency sweeps either linear 
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frequency functions are used. Note that the parame-
ters kl , ke can be chosen each such that fEnd is 
reached after n periods by solving f(tEnd) = fEnd and 
F(tEnd) = n.  
However, the plot of the period function over the 
logarithm of the frequency as shown in Figure 2 re-
veals, that in both cases, i.e. blue line for the linear 
case and red line for exponential the number of peri-
ods at upper frequencies is disproportionately high. 
In fact, too few periods are spent at low frequencies. 
As a result the excitation signal is warped during the 

first couple of periods and cannot be considered si-
nusoidal (cf. Figure 3). 

 

 

Figure 2: Plot of completed periods over logarithmic 
frequency. 

 

 

 

Figure 3: Comparison of sine sweep signals (lower) 
using different frequency functions of time (upper 
plot). 
 
On the other hand, the Bode diagram as the most 
commonly adopted representation of the frequency 
response uses logarithmic frequency scaling. This 
suggests using a different frequency progression 
such that the periods are equidistantly distributed 
over the logarithmic frequency, corresponding to the 
green line in Figure 2. A frequency progression func-
tion can be derived which exhibits the just formu-
lated property: 
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For proof let tk be an arbitrary instant of time and tk+1 
denote the time one period later then the correlation 
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holds by definition (1). Solving (8) for tk+1 yields 
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Evaluation reveals that 
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i.e. the frequency ratio over any period of u(t) is con-
stant independent of time, q.e.d. The frequency in 
fact increases exponentially with the period function 
rather than with time and each period does contribute 
a sample of the frequency response along an equidis-
tant grid of the logarithmic frequency. 
Figure 3 compares the corresponding time signals of 
the three variants of frequency progression during an 
experiment. In all simulations the total number of 
periods is nPeriods=10 and the frequency sweeps 
from 0.1Hz to 10Hz, cf. Figure 2. The result reveals 
that with the frequency progression defined by (7) 
the comparatively high expense at low frequencies 
implicates far better sinusoidal shape but longer total 
simulation time. 

2.2 Scheduling of excitation amplitudes 

Using (1) as plant excitation signal, not only the fre-
quency can change with time. Also the amplitude 
can be made varying according to one’s needs as for 
example to reduce high output amplitudes at poorly 
damped system modes and thus to prevent damage to 
real world systems if applicable. Moreover, ampli-
tude scheduling will be used later in the context of 
describing functions. 

3 Frequency response calculation al-
gorithm 

As indicated in the introduction, the frequency re-
sponse is understood as a complex-valued gain 
which is defined as the ratio of the complex-valued 
phasor of the output signal’s first harmonic  
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over the complex-valued phasor of the sinusoidal 
input 

  tAtu   je~  (12)

that is 
   

 gy

A

y

u

y
AN gg 


j

e
ˆ

~

~
),( . (13)

The complex-valued gain ),( AN   i.e. the frequency 
response data is tabled over sampled values of fre-
quency and/or excitation amplitude. It contains the 
information about gain and phase of the plant’s 
transfer behavior and may be displayed in a Bode 
diagram. Discrete Fourier transformation of input 
and output signals is used for its calculation. In de-
tail, the algorithm used in the Modelica package at 
hand executes the following steps: 
 
1. The plant’s input is stimulated with a sinus 

sweep according to (1). Along the way the fre-
quency and/or amplitude should be changing so 
slowly that the plant can approximately be as-
sumed steady state all the time. Frequency pro-
gression according to one of the options (3), (5), 
(6), or (7) is assumed. 

2. By definition periods begin when F(t) takes on 
integer values. 

3. An integer parameter nSamples defines how 
many samples of the plant response are taken per 
period. Triggered by corresponding events when 
(F(t)nSamplesbecomes integer then plant 
response data is sampled and collected over the 
current period. (The Real parameter  can be set 
arbitrarily in the interval 0. 

 

 

Figure 4: Exemplary signals of the elapsed period: 
Input signal (blue), plant response (red), harmonic 
approximation (green). 
 
4. After the completion of a period the data is proc-

essed in order to identify the complex-valued 
gain assigned to the current frequency, cf. to 
Figure 4 for illustration. Therefore, the complex–
valued Fourier coefficient of the first harmonic 
of the plant response is computed. It results from 
simple discrete Fourier transform of the time se-
ries formed by the collected data of the elapsed 



period. Also the complex–valued Fourier coeffi-
cient of the first harmonic of the input signal 
time series is computed. (The latter depends only 
on A, nSamples, and  and can therefore be 
computed beforehand without the need for sam-
pling.) The complex-valued gain is the quotient 
of these two Fourier coefficients.  

5. Procedure steps 1-4 need to be repeated for each 
of the grid frequencies and/or amplitudes. The 
complex-valued gains representing the frequency 
response data are successively stored in a table.  

6. Finally, the total frequency response may be dis-
played in a Bode diagram and used for any of the 
purposes discussed in the introduction. 

4 Describing functions und dual lo-
cus method 

The matter of this section is adopted from [5], [6] 
and presented here for convenience only and to sup-
port the understanding of the application example in 
section 5.6. 

4.1 Assumptions 

Limit cycles are periodic oscillations performed by 
non-linear systems. Without external input signals, 
the oscillations sustain with a certain frequency and 
amplitude. Since in many cases they are not desired, 
criteria that enable non-linear stability analysis are 
useful. An approximation method that can be applied 
for analyzing the existence and properties of limit 
cycles for a class of non-linear systems is the dual 
locus method [9], [10]. This method requires several 
assumptions. The first assumption is that it is feasi-
ble to represent the open-loop system as a series 
connection of a single nonlinearity n and the remain-
ing linear part G(s). Therefore, the total system con-
sists of a single loop as depicted in Figure 5.  

   

  

Figure 5: Closed loop formed by a nonlinear part n 
and a linear filter G. 

 
The analysis of limit cycles starts with the assump-
tion that the system is in the state of a sustained os-
cillation. Another assumption is necessary for the 
application of the dual locus method: the linear part 

G needs to have distinct low-pass properties in the 
frequency range of the considered oscillation and at 
higher frequencies. As a rule of thumb, a drop of -40 
dB per decade is required.  

4.2 Harmonic linearization 

With these assumptions it is reasonable to assume 
that the signal u being present at the input of the non-
linearity is approximately sinusoidal. This holds be-
cause u is equal (except for the sign) to the output 
signal c of the linear part. Since the higher harmonics 
are attenuated by the low-pass effect of G, the output 
of the non-linearity can be approximated by its first 
harmonic. Thus, the consideration of the non-
linearity can be restricted to its transmission of sinu-
soidal input signals, and a linear approximation of 
the non-linear system can be obtained. This approach 
is called harmonic linearization.  
Furthermore, a describing function N of the nonlin-
ear system n is defined according to (13) as the fre-
quency response from a sinusoidal input signal to the 
first harmonic of the output signal. For static charac-
teristics, the describing function depends only on the 
input amplitude A. Input and first harmonic of the 
output are in phase and thus N(A) is real-valued. The 
describing function may also be applied to non-linear 
dynamic elements that produce a frequency- and 
amplitude-dependent phase shift. Then the describ-
ing function N(A) is complex-valued. For some 
elementary non-linearities, the describing functions 
can be derived analytically [10] by Fourier series 
expansion of the periodic signal y. 

4.3 Dual locus method 

If the system shown in Figure 5 is in a sustained os-
cillation and the abovementioned assumptions hold 
then the transmission properties of the non-linearity 
can be approximated by its describing function. This 
leads to the condition  
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which is denoted harmonic balance. If this equation 
holds for a pair (A) then the system is capable of 
performing an oscillation with this frequency and 
amplitude. The lower representation of (14) provides 
the foundation for the graphical dual locus method: 
limit cycles are possible if there exist intersection 
points between the locus G(j) of the linear part and 
the locus of the negative-inverse describing function 
-1/N(A). From the parameterization of both loci at 



the intersection, the values of  and A can be deter-
mined as properties of the corresponding limit cycle. 
For a criterion reflecting the stability of limit cycles 
the reader is referred to [6]. 

4.4 Example: Describing function of a rate lim-
iter 

   

Figure 6: Ideal rate limiter. 
 
As an example Figure 6 shows an ideal realization of 
a rate limiter. (Note that this realization is not suit-
able for numeric simulation since the infinite gain of 
the switch induces chattering. A remedy is replace-
ment of the switch by a limiter with high gain.) 
In Figure 7 some time responses of the rate limiter 
are shown. Various sinusoidal input signals are ap-
plied with different frequency  and amplitude A. 

 

 

Figure 7: Input and output of a rate limiter at vari-
ous values of A/R. 

 
 

   

Figure 8: Locus (solid line) and negative inverse 
locus (dashed line) of the rate limiter describing 
function. 

Due to the memory of the integrator this dynamic 
non-linearity is not representable by a static charac-
teristic. Nevertheless, a describing function can be 
derived. The shape of the output signal in relation to 
the input signal only depends on the ratio A/R. 
Therefore, the describing function only depends on 
this composed parameter.  
Figure 8 shows both the locus and negative-inverse 
locus of N(A). More details of the rate limiter de-
scribing function derivation can be found in [11], [6]. 

5 Application of the Modelica pack-
age and examples 

In this section, the Modelica package application is 
shown in the context of Dymola 7.4 used as model-
ing and simulation environment. 

5.1 Stimulus signal generator implementation 
in Modelica 

A model class Chirp which can be used to create the 
plant stimuli described in section 2.1 is included in 
the Modelica package. By parameter settings it al-
lows for choosing adequate frequency progression as 
well as signal amplitude scheduling according to 
one’s needs. 

5.2 Implementation of the algorithms for fre-
quency response data recording 

In Figure 1 the standard application is shown. The 
model class FR_Recording covers the total function-
ality necessary for recording the frequency response 
data of the block plant. To avoid confusion note that 
the interconnection shown here is not a closed loop 
in the classical meaning, since the output of 
FR_Recording does not depend on its input. Rather, 
stimulation and analysis functionalities are combined 
in one model class for easier use. The output of 
FR_Recording is internally connected to the output 
of a Chirp instance thus providing the stimulus for 
the plant. To complete the interconnection the plant 
response is input to the FR_Recording instance in 
order to make it accessible there for analysis. That is 
then performed according to the steps demonstrated 
in section 3.  
Before starting the simulation, the Dymola Experi-
ment Setup needs to be well defined. Only variable 
step solvers should be used since the events triggered 
by the procedure e.g. for data sampling are not equi-
distant in time. This is due to the continuously 
changing frequency but equidistant sampling along 
the period function.  



Attention should be paid to the OutputStore set-
tings. Depending on the model complexity storing all 
variables may easily exceed the available memory or 
disc space. Therefore, it is recommended to only 
store Output variables only at events (no Equidistant 
time grid storage). An instance of the FR_Bus model 
class should be used and connected as shown in 
Figure 1. On the bus all signals are available which 
are relevant for the frequency response evaluation. 
They all have the output prefix and will therefore be 
exclusively saved during simulation and be available 
in the Dymola variable browser, cf. Figure 9. In ad-
dition, for large models consider to set the protected 
attribute to both the plant and the FR_Recording in-
stance to prevent excessive data storage. 
 
 

 

Figure 9: Dymola variable browser showing signals 
on fR_Bus 
 
 

 

Figure 10: Dymola dialog for setting parameters of 
the FR_Recording class. 

 

Figure 10 shows the dialog window for setting the 
parameters of the frequency response data recording 
tool. With parameter m the signal dimension of the 
plant output is set, e.g. m = 1 for single output plants. 
For the chirp stimulus fStart and fEnd define the fre-
quency interval, nPeriods is the total number of si-
nusoid periods. One of four frequency progression 
types corresponding to (3), (5), (6), or (7) can be se-
lected. The dependency of the stimulus amplitude on 
time and/or frequency is provided by a replaceable 
model, which allows the user to define it according 
to his needs. nSamples is used to specify the number 
of data points per period to collect time series data 
for discrete Fourier transform. Finally, some parame-
ters can be specified to control the saving of fre-
quency response data to disc. After the simulation 
signals for plotting one of multiple representations of 
the frequency response are available in the Dymola 
variable browser as shown in Figure 9. 

5.3 Example: Frequency response of a mass-
spring-damper system 

The mass-spring-damper plant depicted in Figure 11 
is used as an example to demonstrate how frequency 
response data can be recorded by means of a simula-
tion while using classes from the Modelica package.  

 

  

Figure 11: Mass-spring-damper system. 
 

Therefore, the block plant in Figure 1 is made an 
instance of the mass-spring-damper model. It can 
just as well be modeled as a second order transfer 
function  
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Thus, the frequency response can be calculated ana-
lytically by replacing s = j and the experimental 
result can be compared to this precise analytic refer-
ence (denoted theory in the plots below). The pa-
rameters of the mass-spring-damper plant are chosen 
such that the resonance frequency is /2=10Hz 
and the damping coefficient is D=0.2.  



  

 

Figure 12: Influence of frequency progression on the 
resulting Bode plot 
 
In Figure 12 first attempts are shown to determine 
the frequency response of the mass-spring-damper 
system using only twenty excitation periods. The 
simulation is repeated with each of the three fre-
quency progression variants (5), (6), (7). With the 
constant period ratio frequency progression accord-
ing to (7) the Bode plot frequency grid points are 
equally distributed along the logarithmic frequency 
axis which appears to be the better choice when 
compared to linear (5) or exponential (6) progres-
sion. Figure 13 continues the simulations shown in 
Figure 12. However, now the total number of periods 
n is increased from one simulation to the next 
whereas the frequency progression with constant 
period ratio is kept. The comparison shows that the 
accuracy of the resulting frequency response data 
clearly improves with increasing nPeriods and con-
verges towards the analytic reference. The reason is 
that the transient portion of the plant response looses 
significance when the frequency is changing at a 
lower rate. In practice the precise reference normally 
is not known. Then, a reasonable number of periods 
can be found by gradual increase until the change of 
the result appears tolerable. In addition, at least for 
linear systems the plant response offset and/or the 
deviation between the plant response and its first 
harmonic can be observed to find out whether the 
system is sufficiently steady state. Both quantities 
are also calculated by the tool after each completed 
period. 

 

 

Figure 13: Influence of the number of periods nPe-
riods on the resulting Bode plot. 

5.4 Example: Frequency response of a complex 
multi-body vehicle model 

The recording of frequency response data using the 
Modelica package does not only work for simple 
academic models.  

 

 

Figure 14: Bode plot of a complex multi-body vehi-
cle model at 80 km/h; The input is the steering angle, 
outputs are lateral acceleration (blue curve) and yaw 
rate (red curve). 
 
In Figure 14 the analysis of a multi-body vehicle 
model with 54 states from our VehicleControls li-
brary [7] is shown. The comparison of the vehicle 



steering response w.r.t. gain and phase of yaw rate 
vs. lateral acceleration allows for assessment of re-
spective criteria [13]. The gains are normalized with 
the respective steady state gains here. 
The frequency response data is represented by nice 
smooth curves even in face of the complexity and 
nonlinearity of the plant. Dassl was used as integra-
tion method. The total simulation of 434 seconds 
took 169 seconds on a 3.0 GHz MS Windows PC. 

5.5 Frequence response of multi-input multi-
output (MIMO) models 

Multiple plant outputs can be handled without any 
modification but setting the number m of plant out-
puts correctly, cf. Figure 10. The frequency response 
data for each frequency sample will then be vector 
valued, correspondingly.  

 

 

Figure 15: Total Modelica model for frequency re-
sponse recording of a MIMO plant model. 
 
Handling of multiple inputs is no difficulty either. 
Apparently a stimulation of multiple inputs at the 
same time is not expedient. Hence the analysis 
should be performed by stimulating one input only in 
one simulation. Figure 15 shows the frequency re-
sponse data recording setup for an exemplary MIMO 
plant model exhibiting five outputs and three inputs. 
The active input can be selected by appropriate 
choice of the matrixGain.K parameter vector. 

5.6 Application example for describing func-
tions 

The tool at hand can be applied to determine describ-
ing functions in exactly the same manner as for fre-
quency response data recording. The example shown 
here examines the rate limiter from section 4.4. 
Therefore, the plant instance in Figure 1 is rede-
clared by the corresponding rate limiter Modelica 
class (using R=1 here). The combined parameter 
A/R is the only relevant independent quantity, see 
section 4.4. Therefore we can choose the variation of 
either  or A. In this example we choose  constant 
by setting fStart = fEnd = 1Hz and specify a varia-
tion of A with time, instead. (This proceeding is suit-
able especially for all static non-linearities.) The re-

sults are shown in Figure 16 in terms of the Bode 
diagram. The describing function may as well be 
represented as a locus or negative inverse locus, 
which was already shown in Figure 8.  

 

   

Figure 16: Bode plot of rate limiter describing 
function. 

 
Now, the dual locus method is applied to investigate 
whether the closed loop shown in Figure 17 can per-
form limit cycles. Here, the linear system model is 
the second order lag system already considered in 
section 5.3, however, with a damping coefficient of 
D=0.1 here. 

 

 

Figure 17: Closed loop with second order linear 
system and rate limiter in series connection. 

 
Figure 18 shows both the negative inverse describing 
function locus of the rate limiter (green line) and the 
locus of the linear part. Again the analytical result 
(blue line) and the recorded frequency response data 
(red line) are compared. The discrepancy between 
them is noticeable. This is due to the specific graphi-
cal representation. With the locus, the highest gain 
(which occurs at the resonance peak, compare Figure 
13) appears most prominent. Obviously, during fre-
quency response data recording the system would 
need some more time here to become steady state 
and to produce a preciser locus. 
Two intersection points between the Nyquist locus of 
the linear part and the locus of the negative inverse 
rate limiter describing function exist. Further analy-



sis yields that only the lower intersection point repre-
sents a stable limit cycle [6]. 

 

 

Figure 18: Dual locus plot for the detection of limit 
cycles of the system shown in Figure 17. 

 
A time simulation of the total system from Figure 17 
with dedicated initial condition in fact exhibits the 
limit cycle shown in Figure 19. The frequency and 
amplitude of the limit cycle correspond to the 
parameterization of the loci at the lower intersection 
point. 

 

Figure 19: Limit cycle performed by the system 
shown in Figure 17. 

5.7 System identification from frequency re-
sponse data 

To complete the application examples, briefly the 
option of identifying LTI models (linear time invari-
ant models) from frequency response data is dis-
cussed. Imagine the task to derive a handy LTI rep-
resentation of a rather complex nonlinear Modelica 
model when application of the linearization method 
(cf. section 1.1) is not reasonable. This may be the 
case e.g. due to one of the problems illustrated in 
section 1.2. The LTI representation can be used e.g. 
for model based control. Moreover, models repre-
sented in terms of frequency response data cannot be 
simulated and therefore, back-translation into a 
model which can be numerically time-integrated may 
be useful. For example, it may serve as an alternative 

complexity reduced model in a simulation frame-
work where scalable models are beneficial.  
As stated in the introduction, the frequency response 
data generated with our package well complies with 
FRD models in Matlab. Hence, the methods avail-
able with the Matlab System Identification Toolbox 
(e.g. the pem function) can be used to derive LTI 
models of user-preassigned order. Another way 
which completely avoids Modelica foreign tools is 
the following: Choose an LTI model representation 
from the LinearSystems library [1] and an adequate 
system order. In the next step optimize (i.e. identifiy) 
the parameters of the LTI model. This can be done 
e.g. by using the model calibration feature from the 
Dymola Design Library such that the Bode diagram 
fits the frequency response data sufficiently well. 

6 Conclusions 

An easy-to-use tiny Modelica package for automatic 
recording of frequency response data and describing 
functions was presented. The frequency response 
representations which are resulting from quasi-single 
frequency harmonic stimulation are significantly 
smoother than what can be obtained from spectral 
analysis after stimulation with a multi-frequency 
(e.g. noise) input signal.  
The question into which greater library this package 
will be usefully integrated and what needs to be done 
for seamless assembly still needs to be resolved. 
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