Tutorial at Modelica'2011:
Using the MDT-ModelicaML Eclipse Plugin for Modelica
Development and UML-Modelica Systems Engineering.

by
Wiladimir Schamai (EADS) and Adrian Pop (LIU)

Bring your laptop —hands-on exercises

The OpenModelica MDT (Modelica Development Tooling) Eclipse plugin and UML profile for Modelica,
named ModelicaML, is presented in this tutorial, including hands-on exercises.

The ModelicaML UML profile is an open-source implementation being developed by the Open Source Modelica
Consortium (www.openmodelica.org), It is based on the OMG UML and reuses concepts from the SysML
(Systems Modeling Language) profile and required for system specification. UML diagrams are also extended to
support all Modelica constructs. With ModelicaML system engineers are able to specify entire systems, starting
from requirements, continuing with behavior and finally perform system simulations based on the Modelica
simulation technology and standard libraries.

MDT is primarily aimed at development of large Modelica models or libraries. It has support for browsing,
editing, code completion, type information in popup windows, automatic indentation, model refactoring,
building executables, and debugging (debugging currently only for MetaModelica). It also allows simulation and
plotting from a special command window. Thus it provides a rather complete integrated development
environment, and it is also the first available Eclipse plugin for an equation-based language. It is currently used
regularly for Modelica model development as well as for development of the OpenModelica compiler.

A presentation of MDT/ModelicaML, its integration in Eclipse, and a demonstration will be given. Workshop
participations will be able install the software and use it for some hands-on exercises.

Notes:

The Unified Language (UML) has been created to assist software development processes by providing means to
capture software system structure and behavior. This has evolved into the main standard for Model Driven
Development in software modeling.

The System Modeling Language (SysML) is a graphical modeling language for systems engineering
applications. SysML was developed by systems engineering experts, and was adopted by OMG in 2006. SysML
is built on top of UML and tailored to the needs of system engineers by supporting specification, analysis,
design, verification and validation of broad range of systems and system-of-systems.

ModelicaML is a graphical notation that is based on the OMG UML and which reuses SysML concepts (e.g.
Requirement). It extends the UML/SysML and is designed towards generation of executable Modelica code to
be simulated using Modelica simulation tools. ModelicaML is currently implemented as an UML profile using
the Eclipse UML2 technologies. This allows usage of the ModelicaML Profile in any Eclipse-based
UML/SysML tool, such as Topcased or PapyrusUML.

Short Biographies

Adrian Pop is currently working with model-driven development tools, including the OpenModelica compiler,
the ModelicaML profile, and the MDT Eclipse plugin. He is currently technical coordinator at the Open Source
Modelica Consortium and is also part-time at Linkdping University. He received a PhD on the topic of
Integrated Model-Driven Development Environments from Link&ping University in 2008.

Wiladimir Schamai is a researcher in the Systems Engineering department of EADS Innovation Works (the
corporate research center of the EADS company) and a PhD student at the Linkoping University. After studying
computer science he has been a performing software developer for few years. Since 2005, he is actively involved
in research concerning Model-Based Systems Engineering. He is a member of INCOSE and OMG.

@ Papyrus - ModelicaMl_Profile_v03/test/umIExample3.di2 - Papyrus
File Edit Wew Mavigate Search Project Run Window Help

= ~ q : D o, o8 .0 o o
Ti-He %0 -Q- 5 R P sl ow
T | A Papyrus |
5 outline 52 18, E = f'*umlExampleS.d\Z 3 =08
=
= B2 TwaTanksSystem Palette 3
Fi = B3 TwoTarks emodelicallodels [Select
] Tank TanksConnectedP| {7} Margues
5 TanksConnectedPT (= LML Links -
=
=2 Easec.ontmller source . Dependency .
=-H pieontinuouscontroller sout -
=l x: ModelicaReal / Generalization
@ equations & Connector
A is 5 BassController Insta{\ce e
E—E Class diagram of PIcontinuousController _ Spedl M=t L
) gln <" Role binding
E LiquidSource
tank1 Uik
piContinuous1
i ! (= LML Elements *
) i [;mD—D tSensor] Class
= lirnitalue: .
qout = InstanceSpecifica..,
i : cOut tActuator
& i pin: MeceicaReal[1] [] o e
3 in pMax: ModelicaReal [1] X
* «<2 Collabor ation
in p: ModelicaReal [1] tank? -)
& out plLim: ModelicaReal [1] . . &= Collaborationlse
350 limit walue algorithm piCentinuous2 o Part
i?, Limiti'alue Algorithm CI”D_D tSensor (=1 Property
Eé Class diagram of TwaTanks l:‘ qout = Comment
17 Jnports (2] cou| || |tactuator (2} Constraint
“in Applied Profiles (&)

E’g Class diagram of TwoTanks ﬁg Limit\alue Algorithm E’g Decomposition Diagranm @ Connection Diagram E’g Class diagram of PIcontinua... E’g Class diagram of Tank

0* : s g e BE

Figure 1: Example of a ModelicaML model in PapyrusUML modeling tool

Modelica - SysMLModelicaDemoModels_w0 9/ Two TanksExampleModelicaCode/Two Tanks/TanksConnectedPl.mo - Topcased

File Edit Mavigate Search Project Scripts SmartQWT Run Window Help
il [IEJH E n e f’f" o- % R 2 S]] Correct Indentation
B | B Modelica | () Accelen €% Topeased Modeling [Resource
[+ Madelica Prajects 52 =l <)=='g> ¥ =0 BaseController.ma #TarksConnectedPlmo 20 =0
B[TwoTanks ~ 1 within TwoTanks:
= AckSignal.mo z
TwoTanks, ActSignal F-model TanksConnectedPI
= BaseController. mo 4 Liguid3ource source(flowlevel = 0.0Z2);
TwoTanks,BaseController 5 Tank tankl (area = 1):
limnitvalue.mo [Tank tankZ (area = 1.3);
LiquidFlow . mo 7 PIcontinuouaController piContinucousliref = 0.25):
LiquidSource.ma =] PIcontinuousController piContinuous:z (ref = 0.4) ;l
PIcontinuousController.mo =]
Readsignal.mo 0 eguation
Tank.mo 1 connect (source. gOut, tankl.gln;
=] TanksConnectedPl.mo) 2 connect (tankl.thictuator, piContinuousl.cout) ;
TwoTanks, TanksConnectedPI 3 connect (tankl.t3ensor, piContinuousl.cIn) 2
= package.mo 4 connect (tankl.glut, canks . gln) ;
EE\‘ TwoTanks v 5 connect (tankZ . tictuator, piContinuouss . cOue) ;
& oune Fx € n x oD el tenren piConiment 1)
=2 TwaoTanks, TanksConnectedPT
@ piContinuousl
@ piConkinuous?
@ source
@ tankl
O tankZ
o® Writable Insert §:51 = B 3 OlE =|

Figure 2: Example of a Modelica code in Modelica Development Tooling (MDT)

